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Abstract

It is a known fact that the Wiener index (i.e. the sum of all distances between pairs
of vertices in a graph) of a tree with an odd number of vertices is always even.
In this paper, we consider the distribution of the Wiener index and the related
tree parameter “internal path length” modulo 2 by means of a generating functions
approach as well as by constructing bijections for plane trees.
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1 Introduction and Preliminaries

The modeling and prediction of physico-chemical and biological properties of
molecules is an important field of research in biochemistry. The selection of
molecular structure descriptors (so-called topological indices) has continuously
been an active research area. One of the first such indices was proposed by
H. Wiener 60 years ago [14]; the properties of the Wiener index have been
studied quite extensively in both the mathematical and chemical literature.

Since molecular structures are often acyclic due to natural restrictions on the
valencies of the atoms, the Wiener index of trees has received much attention,
[4] gives a nice survey on important results. It has been mentioned repeatedly
in mathematical [4] and chemical papers [6] that the Wiener index of a tree
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with an odd number of vertices is always even. In fact, this has been considered
as a drawback of the Wiener index, one of the most used topological indices.
In the case when a tree has an even number of vertices, it is known that
the Wiener index may be either even or odd. Hence it is natural to ask for
the proportion of trees with an even/odd Wiener index among all trees with
a given even number of vertices. We will prove, for simply generated trees
(Section 2), the special case of plane trees (Section 3) and most importantly
unrooted trees (Section 4), that there is asymptotically the same number of
trees with an even resp. odd Wiener index among all trees with a given even
number of vertices.

For a tree T , let |T | be the number of vertices in T , and let dT (u,w) be the
distance between u and w, two vertices in T . Then the Wiener index of T is
simply expressed as

W (T ) =
∑

{u,w}⊆V (T )

dT (u,w) =
1

2

∑

u∈V (T )

∑

u∈V (T )

dT (u,w).

We start with an observation that simplifies the generating functions approach.

Lemma 1 Let T be a tree on n = |T | vertices and v be a vertex of T . Then

W (T ) ≡ (n − 1)
∑

w∈V (T )

dT (v, w) mod 2.

Proof: For any two vertices u,w of T , note that

dT (u,w) ≡ dT (v, u) + dT (v, w) mod 2.

Therefore,

W (T ) ≡
∑

{u,w}⊆V (T )

(dT (v, u) + dT (v, w)) = (n − 1)
∑

w∈V (T )

dT (v, w) mod 2,

which proves the lemma. 2

Remark 1 Of course, this also shows the well-known fact that the Wiener
index of a tree with an odd number of vertices is always even (see [4]).

2 Simply generated families of trees

A special class of trees for which several kinds of enumeration problems have
been successfully treated is the class of so-called simply generated trees in
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the sense of Meir and Moon (cf. [11]). A simply generated family of trees is
determined by a sequence c0 = 1, c1, c2, . . . of weights. The weight of a rooted
ordered tree T is then given by

c(T ) =
∏

c
Ni(T )
i ,

where Ni(T ) is the number of vertices in T with exactly i children. Now one
can define a generating function for the total weight of all trees on n vertices
via

T (x) =
∑

T

c(T )x|T |,

which satisfies a functional equation of the form T (x) = xΦ(T (x)), where
Φ(t) =

∑∞
i=0 cit

i. Special cases include plane trees (Φ(t) = 1
1−t

), rooted labeled
trees (Φ(t) = et; in this case, the exponential generating function is used) and
s-ary trees (Φ(t) = (1 + t)s); the following theorem provides information on
the asymptotic behavior of the coefficients of T (x):

Theorem 2 (Meir/Moon [11]) Suppose Φ(t) is an analytic function of t
for |t| < R ≤ ∞, and let T (x) =

∑

n≥0 tnx
n denote the unique solution of

T (x) = xΦ(T (x)) in the neighborhood of x = 0. If

• ck ≥ 0 for k ≥ 1,
• gcd(k : ck > 0) = 1, and

• τΦ′(τ) = Φ(τ) for some 0 < τ < R, then

tn ∼ aρ−nn−3/2

as n → ∞, where ρ = τ/Φ(τ) and a = (Φ(τ)/(2πΦ′′(τ)))1/2.

Now, let D(T ) be the internal path length (also known as total height, cf. [13])
of a rooted tree T , i.e. the sum of the distances from the root r:

D(T ) =
∑

w∈V (T )

dT (r, w).

Then our lemma merely states that

W (T ) ≡ (|T | − 1)D(T ) mod 2.

If T1, T2, . . . , Tk are the branches of T , we have the simple recurrences (cf.
[5])

|T | = 1 +
k
∑

i=1

|Ti|

and

D(T ) =
k
∑

i=1

(D(Ti) + |Ti|) = |T | − 1 +
k
∑

i=1

D(Ti).
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Introducing the bivariate generating function

T (x, y) :=
∑

T

c(T )x|T |yD(T ),

these recurrences translate to a functional equation for T :

T (x, y) = xΦ(T (xy, y)).

We are interested in the subsets of trees with even and odd internal path
length respectively. Their generating functions are given by

1

2
(T (x, 1) + T (x,−1)) and

1

2
(T (x, 1) − T (x,−1)) .

Hence, we have to investigate S(x) := T (x,−1), which satisfies

S(x) = xΦ(S(−x)) and S(−x) = −xΦ(S(x)). (1)

Furthermore, let Φ satisfy the conditions of Theorem 2. We know that the
radius of convergence of T (x) = T (x, 1) is ρ, and since all coefficients of T (x, y)
are nonnegative, the radius of convergence of S(x) = T (x,−1) is certainly ≤ ρ.
However, we will show that S is holomorphic within a larger circle. To this
end, we assume the contrary, i.e. that S(x) has a singularity ρS with |ρS| = ρ.
Since T (ρ) = τ exists (and is finite), S(ρS) and S(−ρS) have to be finite as
well (making use of the fact that all coefficients of T (x, y) are nonnegative
once again). If σ = S(ρS) and σ = S(−ρS), we have

σ = ρSΦ(σ), σ = −ρSΦ(σ),

and the Jacobian determinant
∣

∣

∣

∣

∣

∣

∣

1 −ρSΦ′(σ)

ρSΦ′(σ) 1

∣

∣

∣

∣

∣

∣

∣

= 1 + ρ2
SΦ′(σ)Φ′(σ) (2)

has to be 0. Otherwise, there would be a unique analytic continuation of
S(x) at the point ρS by the implicit function theorem. However, the latter is
impossible: from our conditions, it is clear that ρS 6= ρ and thus

|σ| < τ and |σ| < τ

by the triangle inequality. Furthermore, since Φ′ has only nonnegative coeffi-
cients,

|Φ′(σ)| < Φ′(τ) and |Φ′(σ)| < Φ′(τ),

and it follows that

∣

∣

∣ρ2
SΦ′(σ)Φ′(σ)

∣

∣

∣ < ρ2Φ′(τ)2 =

(

τΦ′(τ)

Φ(τ)

)2

= 1,
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which makes it impossible that the Jacobian in (2) vanishes. Therefore, the
function S is holomorphic in a circle of radius > ρ, which implies that its
radius of convergence is > ρ, i.e.

[xn]S(x) = [xn]T (x,−1) = o(ρ−n).

This implies that

[xn]
(

1

2
(T (x, 1) + T (x,−1))

)

=
1

2
[xn]T (x, 1) + o(ρ−n) ∼ a

2
ρ−nn−3/2

and

[xn]
(

1

2
(T (x, 1) − T (x,−1))

)

=
1

2
[xn]T (x, 1) + o(ρ−n) ∼ a

2
ρ−nn−3/2,

and so we have the following theorem:

Theorem 3 Let a simply generated family that satisfies the conditions of The-

orem 2 be given. Then the total weight of all trees with n vertices and even

internal path length is asymptotically the same as the total weight of all trees

with odd internal path. Furthermore, the same statement holds for trees with

an even number n of vertices and the Wiener index.

Remark 2 Using k-th roots of unity instead of ±1, the proof can easily be
generalized to the distribution of the internal path length modulo an arbitrary
integer k > 1.

For example, let us consider the case of binary trees (Φ(t) = (1 + t)2). We
obtain the equation

S(x) = x(1 + S(−x))2 = x
(

1 − x(1 + S(x))2
)2

.

It is well known (see [1,2]) that the smallest singularity of a function that is
given by such a polynomial equation of the form F (S, x) = 0 can be found by
computing the common zeros of F (S, x) = 0 and FS(S, x) = 0 (the only other
potential singularities are zeros of the coefficient of the highest power of S in
F ; but the only such zero is x = 0 in our case). Making use of Gröbner bases
and the power of a computer algebra system, this leads to a single polynomial
equation for x:

256x4 − 288x2 − 27 = 0.

This shows that the singularities of smallest modulus are ±3i
4

√

2√
3
− 1, i.e. the

radius of convergence is ρ̃ = 3
4

√

2√
3
− 1 = 0.2949899199, and we get

[xn]S(x) = O
(

n−3/2ρ̃−n
)

.

5



Using standard singularity analysis, this could even be refined, see [8] and [9].
It is well known that the number of binary trees with n vertices is the Catalan

number
1

n + 1

(

2n

n

)

,

which grows asymptotically like 1√
πn3

4n—note that ρ̃ > 1
4
. Thus, the number

of binary trees with a given number n of vertices and even (odd) internal path
length is

1

2(n + 1)

(

2n

n

)

+ O
(

n−3/2ρ̃−n
)

.

If n is even, this also gives the number of binary trees with even (odd) Wiener
index.

3 Plane trees

In this section, we consider the special case of plane trees (i.e. Φ(t) = 1
1−t

),
where the equation (1) can be solved explicitly:

S(x) =
x

1 + x · 1
1−S(x)

=
x(1 − S(x))

1 + x − S(x)

or equivalently

S(x)2 − (1 + 2x)S(x) + x = 0.

The solution of this quadratic equation is given by

S(x) =
1 + 2x −

√
1 + 4x2

2
.

Therefore, the number of plane trees with even/odd internal path length (and
thus Wiener index in the case of an even number of vertices) can be written
in terms of Catalan numbers :

• Trees with n vertices and even internal path length:







1
2n

(

2n−2
n−1

)

+ (−1)n/2 · 1
n

(

n−2
n/2−1

)

n even
1
2n

(

2n−2
n−1

)

n odd, n > 1

• Trees with n vertices and odd internal path length:







1
2n

(

2n−2
n−1

)

− (−1)n/2 · 1
n

(

n−2
n/2−1

)

n even
1
2n

(

2n−2
n−1

)

n odd, n > 1
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The only exceptional case is n = 1, where the only existing tree has internal
path length 0. This is exactly the same distribution that has also been observed
for plane trees with an even resp. odd number of leaves—we refer the interested
reader to [3,7]. For this result, bijective proofs have been given as well as purely
algebraic proofs, and so our task is now to prove our observation by means of
bijections as well.

In the case of an odd number of vertices, it is easy to achieve our goal, and
we mention three possible bijections. If the number of vertices is even, the
situation is more intricate, and only the third method (which is based on an
idea due to Chen, Shapiro and Yang [3]) works.

(1) The simplest bijection can be described as follows: let r be the root of a
plane tree T and v be its leftmost child. Furthermore, let Tv be the tree
rooted at v and Tr = T \Tv the rest of the tree, rooted at r. Interchanging
Tr and Tv is clearly an involution on the set of plane trees. Furthermore,
the distance of |Tv| vertices from the root decreases by 1, whereas the
distance of |Tr| vertices increases by 1. Since |Tr| + |Tv| = |T | is odd, so
is |Tr| − |Tv|, which implies that the parity of the internal path length
changes.

(2) The bijection used by Eu, Liu and Yeh in [7] is similar: either Tr or
Tv has an odd number of vertices. Set G(T ) = Tr if |Tr| is odd and
G(T ) = Tv otherwise. Then, there is a k such that Gk+1(T ) is just a single
vertex. Now, apply the operation described in (1) to the tree Gk(T ). This
involution on the set of plane trees changes the parity of the number of
leaves as well as the parity of the internal path length.

(3) The third construction, a modified version of that described by Chen,
Shapiro and Yang in [3], is more involved, but it turns out to be applicable
to the case of an even number of vertices as well. It depends on the notion
of legal and illegal vertices: a (non-root) vertex is called legal if it is a
leaf and the leftmost child of an internal vertex or if it is an internal
vertex and not the leftmost child. A plane tree is called legal if all its
vertices (excluding the root) are legal (otherwise, the tree is called illegal).
Obviously, any legal tree can be constructed by attaching a leaf as the
leftmost child to every vertex of some given plane tree, which implies
that all legal trees have an even number of vertices and that the number
of legal trees with 2n vertices is exactly 1

n

(

2n−2
n−1

)

. Furthermore, if T ′ is
a legal tree with 2n vertices that is constructed from a tree T with n
vertices in this way, then D(T ′) = 2D(T ) + n, since the distance from
the root of a vertex w that is attached to a vertex v is (1 + distance of
v from the root). This means that the parity of the internal path length
of a legal tree only depends on its size.

Thus, we only have to define a parity-reversing involution on the set of
illegal trees. To this end, we proceed as in [3] and perform a depth search
for the first illegal vertex: starting at the root, we choose the rightmost
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Fig. 1. Parity-reversing bijection (1)

Fig. 2. Parity-reversing bijection (2)

illegal branch and iterate this process until we reach an illegal vertex
(since every illegal tree contains at least one illegal vertex, this is always
the case). Now, we have to distinguish two cases:
• If the illegal vertex v is a leaf, then it is not the leftmost child of its

parent vertex w. Let u1, u2, . . . , uk (k ≥ 1) be the siblings of v that
are to the left of v, and let Tui

be subtree rooted at ui. Now, we remove
v, attach a new vertex v′ to uk in the leftmost position, and move
the subtrees Tu1

, Tu2
, . . . , Tuk−1

from w to v′. By this movement, the
distances of the vertices in Tu1

, Tu2
, . . . , Tuk−1

from the root change
by 2, so their parities remain the same. The only other change in the
internal path length results from replacing v by v′, which changes the
distance from the root by exactly 1. Therefore, the parity of the internal
path length is reversed by our procedure. Finally, note that through this
process, uk becomes the illegal vertex that is found by our depth search.

• If the illegal vertex is an internal node, we just reverse the procedure
described in the first case.

The first bijection is illustrated in Figure 1, the second in Figure 2, and the
third one in Figure 3. Let us end this section with a question that suggests
itself now:

Problem 1 Is there a simple bijection between the set of plane trees with an
even resp. odd number of leaves and those with an even resp. odd internal
path length?
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Fig. 3. Parity-reversing bijection (3)

4 Unrooted trees

Considering rooted unordered trees and unrooted trees has the obvious ad-
vantage that isomorphisms are taken into account, but the drawback that
the enumeration is somewhat more difficult than in the case of simply gener-
ated trees. If T (x) is the generating function for rooted unordered trees, it is
well-known (see for instance [10]) that

T (x) = x exp

( ∞
∑

n=1

1

n
T (xn)

)

.

We introduce the bivariate generating function T (x, y) =
∑

T x|T |yD(T ) again
and get analogously

T (x, y) = x exp

( ∞
∑

n=1

1

n
T (xnyn, yn)

)

.

To determine the asymptotics of T (x) = T (x, 1), one notes that R(x) =
∑∞

n=2
1
n
T (xn) has a larger radius of convergence than T (x), and so it is holo-

morphic within a larger circle around the origin. Then, since

T (x) = x exp(T (x) + R(x)),

the remaining steps are similar to those for simply generated families of trees
(cf. [10] again), and one obtains that the smallest singularity of T (x) is ρ =
0.3383218569, and that the coefficients tn = [xn]T (x) satisfy

tn ∼ aρ−nn−3/2,

where a = 0.4399240126. Indeed, even more is true: we can use literally the
same proof as for simply generated trees to show that T (x,−1) has a larger
radius of convergence than T (x, 1), and so there are equally many rooted
unordered trees (asymptotically) with an even internal path length as with an
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odd internal path length, and the same statement holds again for trees with
an even number of vertices and the Wiener index.

Finally, let us consider unrooted trees. The main observation that one makes
is due to Otter [12]: the number of representations of a tree as a rooted tree is
1 larger than the number of representations as a pair of distinct rooted trees
whose roots are joined by an edge. In terms of generating functions, this yields
the equation

T̃ (x) = T (x) − 1

2

(

T (x)2 − T (x2)
)

,

where T̃ denotes the generating function for (unrooted) trees. Now, in order
to study the parity of the Wiener index, we have to write the Wiener index
of a tree T that results from joining two rooted trees T1 and T2 at their roots
in terms of T1 and T2: it is easy to see that one has

W (T ) = W (T1) + W (T2) + D(T1)|T2| + D(T2)|T1| + |T1||T2|.

The first summand takes account of all pairs in T1, the second summand of
all pairs in T2, and the remaining three summands of the mixed pairs. Now,
we are mainly interested in the case that |T | is even—then, there are two
possibilities:

• If |T1| and |T2| are even, then we have W (Ti) ≡ D(Ti) mod 2, and thus

W (T ) ≡ D(T1) + D(T2) mod 2.

• If |T1| and |T2| are odd, then we have W (Ti) ≡ 0 mod 2, and thus

W (T ) ≡ D(T1) + D(T2) + 1 mod 2.

Thus, in order to get the generating function for trees with an even number of
vertices and even Wiener index, we have to consider the following two cases
for T1 and T2:

• |T1| and |T2| are even, and D(T1) ≡ D(T2) mod 2.
• |T1| and |T2| are odd, and D(T1) 6≡ D(T2) mod 2.

Note that we can express the generating functions for the four possible classes
of rooted trees (according to the parities of the number of vertices and the
internal path length) in terms of T (x, y):

• Rooted trees with an even number of vertices and even internal path length:

T00(x) =
1

4
(T (x, 1) + T (x,−1) + T (−x, 1) + T (−x,−1)) .
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• Rooted trees with an even number of vertices and odd internal path length:

T01(x) =
1

4
(T (x, 1) − T (x,−1) + T (−x, 1) − T (−x,−1)) .

• Rooted trees with an odd number of vertices and even internal path length:

T10(x) =
1

4
(T (x, 1) + T (x,−1) − T (−x, 1) − T (−x,−1)) .

• Rooted trees with an odd number of vertices and odd internal path length:

T11(x) =
1

4
(T (x, 1) − T (x,−1) − T (−x, 1) + T (−x,−1)) .

Putting all these considerations together, we get the generating function for
trees with an even number of vertices and even Wiener index:

T̃00(x) = T00(x)−1

2

(

T00(x)2 − T00(x
2)
)

−1

2

(

T01(x)2 − T01(x
2)
)

−T10(x)T11(x).

Upon simplification, this is equal to

T̃00(x) =
1

4

(

T̃ (x) + T̃ (−x)
)

+ Q(x),

where

Q(x) =
1

4

(

T (x,−1) + T (−x,−1) − T (x,−1)T (−x,−1) + T (−x2, 1)
)

has a larger radius of convergence than T̃ (x). It follows that

Theorem 4 The Wiener index is asymptotically equidistributed modulo 2

among trees with an even number of vertices.

In the following table, we give the number of trees with n vertices and even
resp. odd Wiener index for some small values of n:

Number of vertices 2 4 6 8 10 12 14 16 18

Even Wiener index 0 1 2 12 49 278 1559 9674 61814

Odd Wiener index 1 1 4 11 57 273 1600 9646 62053

Total 1 2 6 23 106 551 3159 19320 123867
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