
SUBSET COUNTING IN TREES

STEPHAN G. WAGNER

Abstract. Various enumeration problems for classes of simply generated families of trees have
been the object of investigation in the past. We mention the enumeration of independent subsets,
connected subsets or matchings for instance. The aim of this paper is to show how combinatorial
problems of this type can also be solved for rooted trees and trees, which enables us to take better
account of isomorphisms. As an example, we will determine the average number of independent
vertex subsets of trees and binary rooted trees (every node has outdegree ≤ 2).

1. Introduction

Simply generated families in the sense of Meir and Moon [11] have been investigated in a lot of
papers, such as [5, 12, 13]. A simply generated family is determined by a sequence c0 = 1, c1, c2, . . .
of weights. The weight of a rooted ordered tree is then given by

c(T ) =
∏

c
Ni(T )
i ,

where Ni(T ) is the number of vertices in T with exactly i children. One can define a generating
function for the total weight of all trees on n vertices via

Y (x) =
∑

T

c(T )x|T |.

It is easy to see now that Y (x) must satisfy a functional equation of the form Y (x) = xΦ(Y (x)),
where Φ(t) =

∑∞
i=0 cit

i. Special cases include ordinary rooted ordered trees (Φ(t) = 1
1−t ) and

rooted labelled trees (Φ(t) = et). Because of the simple functional equation for Y (x), enumeration
problems of various kind can be solved by an appropriate study of generating functions. For
example, the average number of independent or maximal independent subsets, connected subsets
or matchings have been studied by various authors [4, 8, 9, 10, 12, 13, 18]. None of them investigates
the average behavior for rooted trees or trees. The number of trees was first determined by Otter
[15] in 1948 using methods which go back to Cayley [3] and Pólya [16]. It is well known (s. [7])
that the generating function T (x) for the number of rooted trees satisfies the following functional
equation:

(1) T (x) = x exp

( ∞
∑

m=1

1

m
T (xm)

)

.

The generating function T̃ (x) for the number of trees is connected to T (x) via

(2) T̃ (x) = T (x) − 1

2

(

T 2(x) − T (x2)
)

.

Thus, rooted trees do not belong to the class of simply generated families of trees. This also compli-
cates the analysis of enumeration problems. However, it seems desirable to obtain information on
the average behaviour of certain combinatorial indices for trees with consideration of isomorphisms.
Apart from purely combinatorial interest, some of them even play a role in theoretical chemistry,
such as the so-called Merrifield-Simmons-index, the number of independent vertex subsets of a
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graph (cf. [14]). As an example, we will determine the average behaviour of this index for trees
and binary rooted trees. However, our method works for other enumeration problems, for example
the number of matchings or connected subsets, just as well with the appropriate modifications.

We introduce some notation first. Let |T | be the size (number of vertices) of a tree, and
let σ(T ) denote the number of independent vertex subsets (i.e. subsets which contain no pair of
adjacent vertices) of a tree T . Furthermore, for a rooted tree T , let σ1(T ) and σ2(T ) denote the
number of independent vertex subsets containing resp. not containing the root. The value σ(T )
was introduced by Prodinger and Tichy [17], who used the name “Fibonacci number” of a tree for
it, since the number of independent vertex subsets of a single path Pn with n vertices is exactly
the Fibonacci number Fn+2. Among other things, they were able to prove that

(3) Fn+2 = σ(Pn) ≤ σ(T ) ≤ σ(Sn) = 2n−1 + 1

for all trees T with n vertices, where Sn denotes the star tree.

Furthermore, for a group G, let Z(G) be the cycle index of G, written as a polynomial in
s1, s2, . . .. For a function f(x), let Z(G, f(x)) be the cycle index of G with f(xk) in place of sk (cf.
[7]). In this way, equation (1) can be written as

T (x) = x

(

1 +

∞
∑

m=1

Z(Sm, T (x))

)

,

since it is a well-known identity that

1 +

∞
∑

m=1

Z(Sm, f(x)) = exp

( ∞
∑

m=1

1

m
f(xn)

)

.

For the generating function T (2)(x) of rooted trees with maximal outdegree ≤ 2, we obtain

T (2)(x) = x
(

1 + Z(S1, T
(2)(x)) + Z(S2, T

(2)(x))
)

= x

(

1 + T (2)(x) +
1

2

(

T (2)(x) + T (2)(x2)
)

)

.
(4)

2. The average number of independent subsets of a rooted tree

For a simply generated family of trees as defined in the introduction, it is not difficult to
determine functional equations for the generating functions S1(x) and S2(x) of σ1 and σ2. In fact,
if T1, . . . , Tr are the branches of a rooted tree T , it is easy to see that

σ1(T ) =
r
∏

i=1

σ2(Ti)

and

σ2(T ) =

r
∏

i=1

(σ1(Ti) + σ2(Ti)),

so that we immediately obtain

S1(x) = xΦ(S2(x)), S2(x) = xΦ(S1(x) + S2(x)).

For rooted trees, things are a little more difficult. Note that terms of type T (xk) appear in
equation (1). These belong to k-tuples of isomorphic rooted trees among the branches. In the
equations for σ1 and σ2, these give a contribution of the form σ1(Ti)

k resp. (σ1(Ti) + σ2(Ti))
k.

Therefore, it is necessary to introduce some more generating functions of the form

Sk,l(x) =
∑

T

σ1(T )kσ2(T )lx|T |,
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where the sum is over all rooted trees T . Now, it is not difficult to see that

(5) S1(x) := S1,0(x) = x exp

( ∞
∑

m=1

1

m
S0,m(xm)

)

and

(6) S2(x) := S0,1(x) = x exp

( ∞
∑

m=1

1

m

m
∑

k=0

(

m

k

)

Sk,m−k(xm)

)

.

Observe in the latter equation that

m
∑

k=0

(

m

k

)

Sk,m−k(x)

is, in fact, a generating function for σ(T )m = (σ1(T ) + σ2(T ))m. In order to find the asymptotic
behavior of the average values of σ1 and σ2, we have to determine the dominating singularity of
S1 and S2. For this purpose, we employ the same trick that is used in the asymptotic calculation
of the number of trees (in fact, we will almost directly follow the proof of Otter’s tree-counting
theorem given in [7]): we observe that only the summands corresponding to m = 1 in the functional
equations are not holomorphic around the singularity. To prove this, we need an a-priori estimate.

Let sn,1 and sn,2 be the coefficients of S1 and S2. Then, we have sn−1,2 ≤ sn,1 ≤ sn,2. These
relations follow easily from the recurrences, but can also be proved by a combinatorial argument:
for the former inequality, note that a rooted tree T with a single branch T1 satisfies σ1(T ) = σ2(T1);
for the latter, note that removing the root from an independent subset containing the root always
results in another independent set.

Therefore, S1 and S2 have a common radius of convergence ρS ; as the coefficients of S1 and
S2 are positive, ρS is a singularity of both of them. Let us denote the radius of convergence of
T by ρ. It is known (cf. [7]) that ρ ≈ 0.338322 < 1

2 . Now, define Cm,n :=
∑

|T |=n σ(T )m. From

estimate (3), we obtain σ(T ) ≤ 2|T | and thus

Cm,n ≤ C1,n2(m−1)n � ρ
(−1−ε)n
S 2(m−1)n

for any ε > 0. On the other hand, ρ
2 ≤ ρS ≤ ρ < 1

2 .

Now, we are ready to prove two auxiliary lemmas:

Lemma 1. The series
∞
∑

m=2

1

m
S0,m(xm)

and
∞
∑

m=2

1

m

m
∑

k=0

(

m

k

)

Sk,m−k(xm)

define analytic functions within a circle of radius ηS > ρS.

Proof. We have to proof that the convergence radius of both series is larger than ρS . In fact, this is
only necessary for the second series, since the first is a partial sum of the second and all coefficients
are positive. Now, let η ∈ (ρS ,

√

ρS

2 ). Since ρS < 1
2 , this interval is nonempty and 2η <

√
2ρS < 1.

Furthermore, choose ε > 0 in such a way that α = 2η2ρ−1−ε
S < 1. There exists some constant
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A > 0 such that C1,n ≤ Aρ
(−1−ε)n
S for all n. Therefore, we have

∞
∑

m=2

1

m

m
∑

k=0

(

m

k

)

Sk,m−k(ηm) =

∞
∑

m=2

1

m

∞
∑

n=1

Cm,nηmn ≤
∞
∑

m=2

1

m

∞
∑

n=1

C1,n2(m−1)nηmn

≤
∞
∑

m=2

1

m

∞
∑

n=1

Aρ
(−1−ε)n
S 2(m−1)nηmn =

∞
∑

m=2

A

m

ρ−1−ε
S 2m−1ηm

1 − ρ−1−ε
S 2m−1ηm

≤
∞
∑

m=2

A

m
ρ−1−ε

S 2m−1ηm 1

1 − 2ρ−1−ε
S η2

≤ Aρ−1−ε
S

4(1 − 2ρ−1−ε
S η2)

∞
∑

m=2

(2η)m

=
Aρ−1−ε

S η2

(1 − 2ρ−1−ε
S η2)(1 − 2η)

< ∞.

Hence, the series converges (absoutely, since all summands are positive) for every η <
√

ρS

2 , which

means that its radius of convergence is ηS ≥
√

ρS

2 > ρS . So it represents an analytic function
within a circle of radius ηS > ρS around the origin. �

Lemma 2. The limits limx→ρS− S1(x) and limx→ρS− S2(x) exist, and the power series for S1 and
S2 converge at ρS (to the respective limits).

Proof. Note that, for 0 ≤ x < ρS , we have S1(x) ≤ S2(x) and

log

(

S2(x)

x

)

=

∞
∑

m=1

1

m

m
∑

k=0

(

m

k

)

Sk,m−k(xm) ≥ S0,1(x) = S2(x).

Thus, it follows that
S2(x)/x

log(S2(x)/x)
≤ 1

x
,

which means that S2(x) (and thus S1(x)) must be bounded on the interval (0, ρS). Since S1(x)
and S2(x) are monotonous functions on this interval, the left-hand limits must exist. It follows
easily that the power series converge at ρS . �

Next, we investigate the values of S1(x) and S2(x) at x = ρS :

Lemma 3. ρS is the only singularity of S1 and S2 on their circle of convergence. The values
s1 = S1(ρS) and s2 = S2(ρS) satisfy the equation

(7) s2(1 + s1) = 1.

Proof. We write the functional equations for S1(x) and S2(x) in the following form:

F1(S1(x), S2(x), x) = x exp(S2(x) + R1(x)) − S1(x) = 0,

F2(S1(x), S2(x), x) = x exp(S1(x) + S2(x) + R2(x)) − S2(x),

where R1(x) and R2(x) are abbreviations for
∑∞

m=2
1
mS0,m(xm) and

∑∞
m=2

1
m

∑m
k=0

(

m
k

)

Sk,m−k(xm)
respectively. We already know that R1 and R2 are analytic within a circle of radius ηS > ρS . The
Jacobian determinant of these equations has to vanish at a singularity. Otherwise, by the implicit
function theorem, they would have a unique analytic solution in a certain neighborhood. Therefore,
we calculate the Jacobian matrix of F1(y1, y2, x) and F2(y1, y2, x):

∂F

∂y
=

(

−1 F1(y1, y2, x) + y1

F2(y1, y2, x) + y2 F2(y1, y2, x) + y2 − 1

)

=

(

−1 y1

y2 y2 − 1

)

,

since both F1 and F2 must vanish. The determinant is thus given by
∣

∣

∣

∣

∂F

∂y

∣

∣

∣

∣

= 1 − y2 − y1y2,

which means that equation (7) must be satisfied. Now let ξ 6= ρS be another point on the circle of
convergence. Then, since all coefficients of S1 and S2 are positive real numbers, we have |S1(ξ)| < s1

and |S2(ξ)| < s2, so the equation 1 − S2(ξ) − S1(ξ)S2(ξ) can clearly not be satisfied. �
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Therefore, we may make use of the following well-known theorem (cf. [1, 2, 7]):

Theorem 4. Let F (x, y) be analytic in each variable seperately in some neighborhood of (x0, y0)
and suppose that the following conditions are satisfied:

(1) F (x0, y0) = 0,
(2) y = f(x) is analytic in |x| < |x0| and x0 is the unique singularity on the circle of covergence,
(3) if f(x) =

∑∞
n=0 fnxn is the expansion of f at the origin, then y0 =

∑∞
n=0 fnxn

0 ,
(4) F (x, f(x)) = 0 for |x| < |x0|,
(5) ∂F

∂y (x0, y0) = 0,

(6) ∂2F
∂y2 (x0, y0) 6= 0.

Then f(x) may be expanded about x0:

f(x) = f(x0) +

∞
∑

k=1

ak(x0 − x)k/2,

and if a1 6= 0,

fn ∼ −a1

2
√

π
x
−n+1/2
0 n−3/2.

If a1 = 0 and a3 6= 0,

fn ∼ 3a3

4
√

π
x
−n+3/2
0 n−5/2.

Note that S(x) = S1(x) + S2(x) satisfies the equation

S(x) = x exp(S(x) + R2(x)) + x exp(x exp(S(x) + R2(x)) + R1(x)),

so the conditions of the theorem are satisfied by the preliminary lemmas with f(x) = S(x) and

F (x, y) = x exp(y + R2(x)) + x exp(x exp(y + R2(x)) + R1(x)) − y.

They are also satisfied for f(x) = S2(x) and

F (x, y) = x exp(x exp(y + R1(x)) + y + R2(x)) − y,

so S1, S2 and S may be expanded around ρS in the way that is given by the theorem. We only
have to care about the values of the implied constants and their calculation. First of all, ρS is
uniquely defined by the equations

s1 = ρS exp(s2 + R1(ρS)),

s2 = ρS exp(s1 + s2 + R2(ρS)),

1 = s2(s1 + 1).

(8)

Note that R1(x) and R2(x) are convergent series within a circle of radius ηS > ρS . Therefore, if
we calculate the coefficients of R1 and R2 up to some power xN , we obtain estimates R1(x) and
R2(x) which can be uniformly bounded within a circle of radius ηS − ε. Solving the system with
Ri instead of Ri thus gives estimates for s1, s2 and ρS .
The error can even be quantified in the following way: clearly, we have C1,n ≤ 2ntn, where tn is the
number of rooted trees of size n. This shows, following the estimates of Lemma 1, that the error

can be uniformly and explicitly bounded within the circle of radius
√

ρ

2 − ε. On the other hand,

by the left-hand estimate in (3), we have ρS ≤ ρ(
√

5−1)
2 <

√
ρ

2 , which means that the error can be
estimated explicitly. Numerical computation shows that ρS ≈ 0.2020447686, s1 ≈ 0.4202770330
and s2 ≈ 0.7040879890. Computational details will be discussed in section 4. Now, write

S1(x) = s1 − b1

√
ρS − x + . . . ,

S2(x) = s2 − b2

√
ρS − x + . . . ,

S(x) = s − b
√

ρS − x + . . . .
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To determine b1 and b2 (and thus b = b1 + b2), we note first that

S′
1(x)(1 − S2(x) − S1(x)S2(x)) =

b1

2
(s1b2 + s2b1 + b2) + O((ρS − x)1/2)

and

S′
2(x)(1 − S2(x) − S1(x)S2(x)) =

b2

2
(s1b2 + s2b1 + b2) + O((ρS − x)1/2),

so we have

b1

2
(s1b2 + s2b1 + b2) = lim

x→ρS

S′
1(x)(1 − S2(x) − S1(x)S2(x)) =: c1,

b2

2
(s1b2 + s2b1 + b2) = lim

x→ρS

S′
2(x)(1 − S2(x) − S1(x)S2(x)) =: c2.

(9)

The values on the right can be calculated by differentiating the functional equations for S1 and S2

first:

S′
1(x) =

S1(x)

x
+ S1(x)(S′

2(x) + R′
1(x))

and

S′
2(x) =

S2(x)

x
+ S2(x)(S′

1(x) + S′
2(x) + R′

2(x)).

Solving this system for S′
1(x) and S′

2(x) yields

S′
1(x)(1 − S2(x) − S1(x)S2(x)) =

S1(x)

x
+ S1(x)R′

1(x) + S1(x)S2(x)(R′
2(x) − R′

1(x))

and

S′
2(x)(1 − S2(x) − S1(x)S2(x)) =

S2(x)(1 + S1(x))

x
+ S1(x)S2(x)R′

1(x) + S2(x)R′
2(x).

Therefore,

c1 =
s1

ρS
+ s1

∞
∑

m=2

S′
0,m(ρm

S )ρm−1
S + s1s2

∞
∑

m=2

m
∑

k=1

(

m

k

)

S′
k,m−k(ρm

S )ρm−1
S

and

c2 =
1

ρS
+ s1s2

∞
∑

m=2

S′
0,m(ρm

S )ρm−1
S + s2

∞
∑

m=2

m
∑

k=0

(

m

k

)

S′
k,m−k(ρm

S )ρm−1
S ,

which can be calculated numerically. Furthermore, solving the system (9) for b1 and b2 gives us

b1 =

√
2c1√

s2c1 + c2 + s1c2
, b2 =

√
2c2√

s2c1 + c2 + s1c2

and thus

(10) b =

√
2(c1 + c2)√

s2c1 + c2 + s1c2
.

Numerical calculations show that b ≈ 3.8130254771. Noting that the number tn of rooted trees of
size n satisfies tn ∼ A ·n−3/2ρ−n with A ≈ 0.4399240126, we have obtained the following theorem:

Theorem 5. The average number of independent vertex subsets in a rooted tree of size n is given
by

avn ∼ (1.0990334536) · (1.6744895662)n.
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3. The average number of independent subsets of a tree

Now, having established the asymptotics for rooted trees, we are also able to give them
for trees. We will make use of Otter’s theorem [15] which states that the number of different
representations of a tree as a rooted tree equals 1 plus the number of representations as a pair of
two unequal rooted trees (the order being irrelevant), with their roots joined by an edge (see also
[7]). It is easy to see that, if two rooted trees T1, T2 are joined by an edge connecting their root,
the resulting tree T has a total number of

σ(T ) = σ1(T1)σ2(T2) + σ2(T1)σ1(T2) + σ2(T1)σ2(T2)

independent vertices. Thus, if we denote the generating function which counts independent subsets
in all trees instead of rooted trees by S̃, we have

(11) S̃(x) = S(x) − 1

2

(

2S1(x)S2(x) + S2(x)2 − 2S1,1(x
2) − S0,2(x

2)
)

.

S1,1(x
2) and S0,2(x

2) are holomorphic around ρS . Thus, we only have to determine the expansion
of the remaining terms around ρS . Let

S̃(x) = a0 − a1

√
ρS − x + a2(ρS − x) + a3(ρS − x)3/2 + . . . .

We know that s2(s1 + 1) = 1. Furthermore, from the equation

S1(x) = x exp(S2(x) + R1(x)),

we obtain b1 = s1b2. Inserting the expansions of S1 and S2 in (11) and using these relations shows
that a1 = 0. To determine a3, we differentiate twice:

S̃′′(x) =
3a3

4
(ρS − x)−1/2 + . . . .

On the other hand, we differentiate the functional equations for S′
1 and S′

2:

S′′
1 (x) =

S′
1(x)

x
− S1(x)

x2
+ S′

1(x)(S′
2(x) + R′

1(x)) + S1(x)(S′′
2 (x) + R′′

1 (x))

and

S′′
2 (x) =

S′
2(x)

x
− S2(x)

x2
+ S′

2(x)(S′
1(x) + S′

2(x) + R′
2(x)) + S2(x)(S′′

1 (x) + S′′
2 (x) + R′′

2 (x)).

We solve this system for S′′
1 and S′′

2 and insert it in

S̃′′(x) = S′′
1 (x) + S′′

2 (x)− S′′
1 (x)S2(x)− 2S′

1(x)S′
2(x)− S1(x)S′′

2 (x)− S′
2(x)2 − S2(x)S′′

2 (x) + R′′(x)

together with the expressions for S′
1 and S′

2. Note that R(x) = S1,1(x
2)+ 1

2S0,2(x
2) is holomorphic

within the circle of radius ηS > ρS . Then, we use the expansions of S1 and S2 together with the
relations for s1, s2, b1, b2 to obtain the final expression for a3:

3a3

4
=

√

c3
2

2s2(1 + s2 − s2
2)

≈ 11.7914747833.

This gives us the asymptotic behavior of the coefficients of S̃ and, together with the asymptotic
formula for the number t̃n of trees of size n, which is t̃n ∼ B · n−5/2ρ−n with B ≈ 0.5349496061,
we have established the following theorem:

Theorem 6. The average number of independent vertex subsets in a tree of size n is given by

ãvn ∼ (1.1294102715) · (1.6744895662)n.

Thus, interestingly, a tree contains more independent sets on average than a rooted tree.



8 STEPHAN G. WAGNER

4. Efficient computation of the auxiliary functions and numerical values

In the approximate solution of the system (8), it was necessary to compute a sufficient number
of coefficients of the auxiliary functions Sk,l. For this purpose, it is possible, of course, to compute
the number of independent subsets explicitly for all rooted trees of size n ≤ N . However, this
brute-force method is highly inefficient, so it is desirable to have a better method at hand. It is
quite simple to achieve this: we can deduce functional equations for Sk,l in the same manner as
we did for S1 = S1,0 and S2 = S0,1. These are given by the general formula

(12) Sk,l(x) = x exp

( ∞
∑

m=1

1

m

ml
∑

r=0

(

ml

r

)

Sml−r,mk+r(x
m)

)

,

which enables us to compute the coefficients of Sk,l in a simple recursive manner. We give the
initial values of S1,0, S0,1 and S2,0 for instance:

S1,0(x) = x + x2 + 3x3 + 10x4 + 38x5 + 143x6 + 577x7 + 2325x8 + 9697x9 + 40853x10 + . . . ,

S0,1(x) = x + 2x2 + 7x3 + 24x4 + 91x5 + 341x6 + 1370x7 + 5504x8 + 22914x9 + 96457x10 + . . . ,

S2,0(x) = x + x2 + 5x3 + 30x4 + 196x5 + 1267x6 + 8615x7 + 58613x8 + 411209x9 + 2909597x10 + . . . .

Note that the functional equation can also be used to calculate higher moments of the number of
independent subsets of a random tree. We give some numerical instances of the average values for
rooted trees resp. trees in the following table:

n avn ãvn n avn ãvn

1 2 2 8 68.08 70.83
2 3 3 9 114.02 119.09
3 5 5 10 190.97 199.02
4 8.5 8.5 15 2512.81 2608.75
5 14.33 14.67 20 33063.90 34210.51
6 24.2 24.83 50 1.719535 · 1011 1.771075 · 1011

7 40.56 42.09 100 2.687782 · 1022 2.765055 · 1022

Table 1. Some values of avn and ãvn.

5. Independent subsets in a degree-restricted tree

It is clear that the methods we established in section 2 are easily generalized to other classes
of trees or tree-like structures. As an example, we will determine the asymptotic average number
of independent subsets in binary rooted trees (maximal outdegree ≤ 2, cf. [15, 7]). The functional
equation for T (2), the generating function for the number of such trees, has already been given in

the introduction. Next, we define S
(2)
k,l in the same manner as in section 2. The functional equation

S
(2)
k,l (x) = x



1 +

l
∑

r=0

(

l

r

)

S
(2)
l−r,k+r(x) +

1

2

(

l
∑

r=0

(

l

r

)

S
(2)
l−r,k+r(x)

)2

+
1

2

(

2l
∑

r=0

(

2l

r

)

S
(2)
2l−r,2k+r(x

2)

)





follows at once in the same way as for rooted trees. In particular, we have

S
(2)
1 (x) := S

(2)
1,0(x) = x

(

1 + S
(2)
2 (x) +

1

2
S

(2)
2 (x)2 +

1

2
S

(2)
0,2(x2)

)

,

S
(2)
2 (x) := S

(2)
0,1(x) = x

(

1 + S
(2)
1 (x) + S

(2)
2 (x) +

1

2

(

S
(2)
1 (x) + S

(2)
2 (x)

)2

+
1

2

(

S
(2)
0,2(x

2) + 2S
(2)
1,1(x

2) + S
(2)
2,0(x2)

)

)

.

(13)
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Analogously to Theorem 5, we achieve the following result:

Theorem 7. The average number of independent vertex subsets in a rooted tree of size n with
maximal outdegree ≤ 2 is given by

av(2)
n ∼ (1.1311298442) · (1.6425223181)n.

It is not surprising that the average number of independent subsets decreases by the degree
restriction. Rooted trees with restricted outdegrees are typically more “path-like”, so – in view of
inequality (3) – the number of independent subsets is closer to the minimum. Again, we give some
numerical values in the following table:

n av
(2)
n n av

(2)
n

1 2 8 60.04
2 3 9 98.55
3 5 10 161.91
4 8.33 15 1934.40
5 13.5 20 23121.26
6 22.27 50 6.748132 · 1010

7 36.67 100 4.024331 · 1021

Table 2. Some values of av
(2)
n .
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