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Abstract

The Hosoya index and the Merrifield-Simmons index are typical examples of graph

invariants used in mathematical chemistry for quantifying relevant details of molec-

ular structure. In recent years, quite a lot of work has been done on the extremal

problem for these two indices, i. e., the problem of determining the graphs within

certain prescribed classes that maximize or minimize the index value. This survey

collects and classifies these results, and also provides some useful auxiliary results,

tools and techniques that are frequently used in the study of this type of problem.

1 History and chemical background

In 1971 the Japanese chemist Haruo Hosoya introduced a molecular-graph based structure

descriptor [34], which he named topological index and denoted by Z. He showed that

certain physico-chemical properties of alkanes (= saturated hydrocarbons) – in particular,



their boiling points – are well correlated with Z. He defined the quantity Z in the following

manner.

Let G be a (molecular) graph. Denote by m(G, k) the number of ways in which k mutually

independent edges can be selected in G. By definition, m(G, 0) = 1 for all graphs, and

m(G, 1) is equal to the number of edges of G. Then

Z = Z(G) =
∑
k≥0

m(G, k) .

In a series of subsequent papers, Hosoya and his coworkers [15, 38, 42, 47, 48, 75, 76, 77]

and others [19] showed that the “topological index” Z is related with a variety of physico-

chemical properties of alkanes. Another series of researches revealed the applicability of Z

in the theory of conjugated π-electron systems [24, 29, 30, 36, 45, 46]. Other applications

of Z were also attempted [35].

The molecular structure descriptor Z was soon re-named into Hosoya index or Hosoya

topological index, whereas the name “topological index” is nowadays used for any of the

countless graph invariants [28, 95] that are found (or are claimed) to have some chemical

applicability.

For a review on the chemical aspects Hosoya–index saga see [37, 39, 40, 41].

The early mathematical investigations [34, 36], related to the Hosoya index were all based

on properties of the numbers m(G, k). Recall that if G is a tree (or, more generally, a

forest), then its characteristic polynomial is of the form [5, 6]

φ(G; x) =
∑
k≥0

(−1)k m(G, k) xn−2k (1)

where n stands for the number of vertices. For a general graph G, the right-hand side of

Eq. (1) is called the matching polynomial. Its theory has been extensively elaborated, see

[5]. One of the outstanding algebraic properties of the matching polynomial of any graph

is that all its zeros are real [5, 16].

The energy E = E(G) of a graph G is, by definition, equal to the sum of absolute values

of the eigenvalues of this graph [5, 6, 18, 23, 27, 28]. As a consequence of Eq. (1), the

energy of a tree T satisfies the relation [17, 69]

E(T ) =
2

π

∞∫

0

x−2 ln M(T ; x2) dx (2)

where

M(T ; x) =
∑
k≥0

m(T, k) xk .



Note that Z(T ) = M(T ; 1).

Formula (2) has been much used for finding trees of various types, having extremal energies

(see the review [27] and the recent works [54, 55, 56, 114]). For this, one can often show

that for two trees T1 and T2 the inequalities m(T1, k) ≥ m(T2, k) hold for all k . If so,

then from Eq. (2) it follows that E(T1) ≥ E(T2). In this case, also Z(T1) ≥ Z(T2). This

is also the reason for the fact that in many known instances, the tree within a particular

class that maximizes/minimizes the energy is also the one that maximizes/minimizes the

Hosoya index [54, 80, 103, 104]. This has even been proven for some non-tree classes, see

for instance [49].

From a formal point of view, the definition of the Merrifield-Simmons index is analogous

to that of the Hosoya index:

Let G be a (molecular) graph. Denote by n(G, k) the number of ways in which k mutually

independent vertices can be selected in G. By definition, n(G, 0) = 1 for all graphs, and

n(G, 1) is equal to the number of vertices of G. Then

σ = σ(G) =
∑
k≥0

n(G, k) .

In spite of the analogy between Z and σ, the way in which the quantity σ was conceived

(at least within mathematico-chemical considerations) is quite different. The American

chemists Richard E. Merrifield and Howard E. Simmons elaborated a theory aimed at

describing molecular structure by means of finite-set topology. Along these lines they

published a series of articles [70, 71, 72, 73, 91] and a book [74]. From a present-day’s point

of view, one can say that their theory was not particularly successful, and certainly was

not considered and further extended by later authors. However, one seemingly marginal

detail in their topological formalism attracted the attention of colleagues and eventually

became known as the Merrifield-Simmons index. This was the number of open sets of the

finite topology, which the authors immediately recognized to be equal to the number of

independent sets of vertices of the graph corresponding to that topology [70]. Already in

the first paper [70], the symbol σ was used for this quantity.

Recognizing the analogy between σ and the Hosoya index Z , one of the present authors

proposed that the former be called the “Hosoya index of the second kind” (in which case

Z would be the “Hosoya index of the first kind”) [26]. In other two early papers [25, 44]

(both coauthored by Hosoya), the index σ was not named, but it was only referred to as

“proposed by Merrifield and Simmons”. The name Merrifield-Simmons index seems to

be first used by one of the present authors in [20], and then in [21, 22], after which it was

accepted by the entire mathematico-chemical community.



The Hosoya index and the Merrifield-Simmons index are typical examples of graph in-

variants used in mathematical chemistry for quantifying relevant details of molecular

structure. In recent years, a lot of work has been done on the extremal problem for these

two indices, i. e., on determining the graphs within a prescribed class that minimize or

maximize the value of the index. The two indices do not only have very similar defini-

tions, they are also quite related in another respect: for most graph classes that have

been studied so far, the graph that minimizes the Merrifield-Simmons index is also the

one that maximizes the Hosoya index, and vice versa (for a notable exception, see Sec-

tion 2.3.3). This relation is still not totally understood, as it is not necessarily true that

if σ(G1) > σ(G2) for some graphs G1 and G2, then also Z(G1) < Z(G2). This does not

even hold for very restricted graph classes such as trees, see for instance [98]. We will

also see that the methods that are usually employed for treating the extremal problem

are very similar for the two indices – see Section 3, which gives an overview of important

methods and auxiliary results in this context.

In the following, we restrict ourselves to the extremal problem for the Hosoya index

and the Merrifield-Simmons index, which has been the topic of many recent papers, and

neglect relations to other indices as well as other problems concerning these two indices.

The interested reader is referred, however, to other articles [37, 39, 43, 60, 64, 97, 102]

and books [28, 74, 96] that treat some of these aspects. The following section discusses

known results, i. e., characterizations of graphs that maximize or minimize the two

indices within certain prescribed classes of graphs, aiming to give an extensive overview

of the progress that has been made since the introduction of the Hosoya index and the

Merrifield-Simmons index to the literature.

Since there are quite a few useful auxiliary results that have been used in several contexts,

we discuss some of them in Section 3 in more detail and outline the typical techniques

that are employed in solving the extremal problem for a given class of graphs. Section 4,

which presents some interesting problems for further study, completes this survey.

2 A survey of results

This section is devoted to various results concerning the extremal problem for the Hosoya

index and the Merrifield index, most of which have been achieved quite recently. While

trying to be as exhaustive as possible, we decided to restrict ourselves as follows: for

all the graph classes that will be discussed in the following, we explicitly describe those

graphs that maximize/minimize the two indices. In many instances, however, even more

is known, such as those graphs that attain the second-largest (-smallest), third-largest

(-smallest), etc. values. In such cases, we only give some detail and provide the relevant



references for the interested reader. If not mentioned otherwise, the extremal graphs in

the following theorems are unique.

2.1 General graphs

It is fairly obvious that, among all graphs of given order n, the complete graph is the one

that has the largest number of matchings, namely

Z(Kn) =

⌊n/2⌋∑
k=0

n!

2kk!(n − 2k)!
,

and the smallest number of independent sets (n + 1, to be precise), and that the edgeless

(empty) graph has the smallest number of matchings (only the empty matching) and the

largest number of independent sets (namely 2n). Generally, it is clear that removing edges

decreases the Hosoya index and increases the Merrifield-Simmons index. Things become

more interesting if one imposes further restrictions, for instance, if one only considers

connected graphs. The complete graph is clearly still extremal, and on the other hand,

the aforementioned argument on removing edges shows that the minimum of the Hosoya

index and the maximum of the Merrifield-Simmons index must be attained for a tree (see

the following section).

A paper by Tichy and one of the present authors [93] goes a little further by characterizing

all connected graphs on n vertices whose Merrifield-Simmons is at least 2n−2 + 5 and

showing that for any integer s ∈ {n+1, n+2, . . . , 2n}, there is a (connected) graph whose

Merrifield-Simmons index is s (there are many nonisomorphic graphs in this case, so it is

hard to describe them explicitly). Zhao and Liu [120] came to essentially the same result

concerning graphs with a large Merrifield-Simmons index with a slightly different approach

(they also extended the list further to 2n−2). As a byproduct, one can also determine the

connected graph with n vertices and m edges that maximizes the Merrifield-Simmons

index, if m is not too large:

Theorem 1 ([120]) For n − 1 ≤ m ≤ 2n − 3, the maximum value of the Merrifield-

Simmons index among all connected graphs with n vertices and m edges is 2n−2+22n−3−m+

1. It is attained for the graph whose shape is shown in Figure 1, comprising of m− n + 1

triangles sharing a common edge and 2n − m − 3 edges attached to one of the two

endpoints of this edge. This is the unique graphs that maximizes the Merrifield-Simmons

index, except when m = 2n− 4, in which case there is a second graph with this property.

The situation is more involved if the Hosoya index is considered, and one cannot expect

to obtain a result that is as strong as that of Zhao and Liu in this case; see [93] for a

detailed explanation.



. . .

...

Figure 1: The connected graph that maximizes the Merrifield-Simmons index, given the

number of vertices and the number of edges.

Another interesting problem was studied by Bruyère and Mélot in [2]: they consider

graphs with a fixed stability number (i.e., the largest size of an independent set) and

determine those that maximize the Merrifield-Simmons index. It turns out that the

extremal graphs are the well-known Turán graphs that occur frequently in graph theory

(see for instance [13]). The Turán graph on n vertices with stability number a consists

of a disjoint cliques (complete graphs) of size ⌊n/a⌋ or ⌈n/a⌉. This result also appears in

a dual version (for cliques instead of independent sets, which is equivalent to considering

the complement graph) in an earlier paper by Hedman [31]. Bruyère and Mélot [2] also

solve the analogous problem for connected graphs and obtain a similar result: the graph

maximizing the Merrifield-Simmons index is the Turán-connected graph that is obtained

from a Turán graph (as described above) by connecting one vertex of one of the cliques

of size ⌈n/a⌉ with one vertex from each of the other cliques (see Figure 2 for an example

with 7 vertices and stability number 3).

Figure 2: A Turán-connected graph.

On the other hand, the minimum for a given stability number is somewhat easier to

obtain and given in [84]: apart from the vertices that form the largest independent set, all

vertices are mutually connected in the extremal graph. A very similar problem results if

one fixes the size of a maximum matching; Yu and Tian [111] consider this in even more

generality: in addition to the order n of the graph and its edge-independence number m

(i.e., the size of a maximum matching), the cyclomatic number t is fixed (this is equivalent

to prescribing the number of edges, which is equal to n + t− 1). Trees correspond to the

case that the cyclomatic number is 0, see Section 2.2.4. If the cyclomatic number is less

than the edge-independence number, then the maximum of the Merrifield-Simmons index

and the minimum of the Hosoya index are attained for a graph that consists of t triangles,

m− t− 1 paths of length 2 and n− 2m + 1 single edges attached to a common center (see



Figure 3 for an example).

Figure 3: The graph that maximizes the Merrifield-Simmons index and minimizes

the Hosoya index among all graphs with 15 vertices, cyclomatic number 3 and edge-

independence number 6.

2.2 Trees

Probably the earliest account of our two indices in the mathematical literature is a short

paper by Prodinger and Tichy [86], in which they prove, among other things, that the

star is the tree that maximizes the Merrifield-Simmons index, and that the path is the

tree that minimizes it (see Figure 4). It is easy to see, by means of a recursion, that

the Merrifield-Simmons index of a path is exactly a Fibonacci number, a result that has

been used frequently as an auxiliary tool. This fact was also the reason why they called

the number of independent sets of a graph the Fibonacci number of a graph—the work

of Merrifield and Simmons [70, 71, 72, 73, 74], which led to the name that is now most

frequently used, was published around the same time.

Figure 4: The star and the path on 7 vertices.

As in most other instances, the situation for the Hosoya index is absolutely analogous.

The star minimizes the Hosoya index, while the path maximizes it, see [17, 28]. Let us

summarize this as a single statement:

Theorem 2 Among all trees with a given number of vertices n, the star Sn maximizes the

Merrifield-Simmons index (σ(Sn) = 2n−1 + 1) and minimizes the Hosoya index (Z(Sn) =

n), while the path Pn minimizes the Merrifield-Simmons index (σ(Sn) = Fn+2, where Fn

denotes the Fibonacci numbers throughout this paper, defined by F0 = 0, F1 = 1 and

Fn+1 = Fn + Fn−1) and maximizes the Hosoya index (Z(Pn) = Fn+1).



Since trees are quite natural objects from a chemical point of view (acyclic systems), it

is not surprising that trees have been investigated further in the literature. Therefore, of

course, much more than Theorem 2 is known by now:

Two different groups (Knopfmacher et al. [53] and Li et al. [61]) obtained essentially the

same results (among others) in their respective papers: they characterized all trees on n

vertices whose Merrifield-Simmons index is between 2n−2+6 and 2n−1+1 ([61] goes a little

further, namely to 2n−2). It turns out that all such trees have diameter ≤ 4. Both were

unaware of an earlier paper by Lin and Lin [63], in which the same result appears. This is

a typical example that illustrates why many results have been obtained independently by

different groups: these papers use three different names for the same thing (the number

of independent sets of a graph). Nevertheless, it is interesting to see how three slightly

different approaches end up with the same result.

On the other hand, a lot is known about trees with small Merrifield-Simmons index

as well: the aforementioned paper of Lin and Lin [63] also gives the tree with second-

smallest Merrifield-Simmons index, and the third-smallest was determined by Zhao and

Li [119]. Building up on their ideas, it was shown in [98] that all trees on n vertices

whose Merrifield-Simmons index is less than 18Fn−5 + 21Fn−6 or whose Hosoya index is

greater than 16Fn−5 (Fn denoting Fibonacci numbers as above) are tripodes, i.e., trees

with exactly three leaves (equivalently, exactly one vertex whose degree is 3, while all

other vertices have degree 1 or 2) or paths. Interestingly, the sum of Merrifield-Simmons

index and Hosoya index of these trees is constant (equal to Fn+3), which implies that their

orders with respect to the two indices are the same.

A few further things about trees with small Hosoya index are known as well, but no

result that is as extensive as those in [61] or [98]; in the aforementioned paper [17], one of

the earliest references in this context, the trees with second-smallest and third-smallest

Hosoya index are determined (as well as the tree with second-largest Hosoya index). Hou

[50] also gives the tree with second-smallest Hosoya-index (as a byproduct of a more

general result).

Once one can solve the extremal problem for general trees, it is quite natural to impose

additional restrictions, such as fixing the number of leaves, the diameter or the maximum

degree. The following pages provide an overview over results that have been obtained in

this direction.

2.2.1 Trees with fixed number of leaves

This is another instance of a class of graphs for which the extremal graphs for the two

indices coincide:



Theorem 3 ([82, 110]) Among all trees with n vertices and k leaves (also known as

pendant vertices), the tree that maximizes the Merrifield-Simmons index and minimizes

the Hosoya index is the broom, i.e., the tree that results from identifying the center of a

star Sk with one end of a path of length n−k, see Figure 5. Its Merrifield-Simmons index

is 2k−1Fn−k+2 + Fn−k+1, its Hosoya index is kFn−k+1 + Fn−k.

. . .
...

Figure 5: The broom.

This theorem was proven by Pan et al. [82] and independently by Yu and Lv [110], and

extended by Wang et al. [101] for the Merrifield-Simmons index (they also provide the

trees with second-largest Merrifield-Simmons index) as well as Lv et al. [67] (second-

largest Merrifield-Simmons index and second-smallest Hosoya index). The problem seems

to be much more complicated if one asks for the minimum Merrifield-Simmons index or

maximum Hosoya index; Yan and Ye [103] (for the Hosoya index) and Deng and Guo

[12] (for the Merrifield-Simmons index) provide partial (yet interesting) results in this

direction for trees with many leaves (trees with n vertices and at least ⌊n
2

+ 1⌋ leaves).

2.2.2 Trees with fixed diameter

Let us consider trees with fixed diameter now. This problem is closely related to the one

in the previous subsection: note that if the diameter is large, the number of leaves can be

expected to be small, and vice versa. Therefore, it is also not surprising that the broom

(Figure 5) occurs once again:

Theorem 4 ([4, 53, 61, 82, 85, 104]) Among all trees with n vertices and diameter

d, the broom is the tree that maximizes the Merrifield-Simmons index and minimizes the

Hosoya index.

This theorem occurs in several papers by different authors (for the Merrifield-Simmons

index in [53, 61, 85] and for the Hosoya index in [4, 82, 104]), partly as auxiliary result (as

in [53]) or corollary to a more general theorem (see for instance [104], where minimality

of the energy is established and minimality of the Hosoya index is stated as a byproduct).

This theorem was greatly extended for both indices by Liu et al. [66]: they determine

a complete list of ⌊d
2
⌋ + 1 trees (with largest, second-largest, third-largest, . . . Merrifield-

Simmons index as well as smallest, second-smallest, third-smallest, . . . Hosoya index) for

arbitrary diameter d between 3 and n − 4.



Again things seem to be much harder if the minimum Merrifield-Simmons index or the

maximum Hosoya index are considered, and results are only available for trees with very

short diameter (up to at most 5), see [53, 80] for details.

2.2.3 Trees with fixed maximum degree

Since the path and the star, the two extremal trees with respect to our two indices, are

also extremal when it comes to the maximum degree, one might ask what happens if the

maximum degree is fixed. From a chemical point of view, it is also very natural to study

trees with restrictions on their degrees; in particular, chemical trees (all degrees less than

or equal to 4, see [14]) have been of interest.

The trees that maximize the Hosoya index and minimize the Merrifield-Simmons index

among all trees with given maximum degree are essentially generalized stars:

Theorem 5 ([98]) Given the number n of vertices and the maximum degree d, the tree

that maximizes the Hosoya index and minimizes the Merrifield-Simmons index is a d-

pode, i.e., a tree that is obtained from a collection of d paths by attaching one endpoint

of each path to a common center. The lengths of the rays depend on d as follows:

• If d ≥ n−1
2

, then there are n − 1 − d rays of length 2 and 2d − n + 1 rays of

length 1 (Figure 6, left). The Merrifield-Simmons index of the resulting tree is

3n−d−122d−n+1 + 2n−d−1, the Hosoya index is 2n−d−2(3d − n + 3).

• If d < n−1
2

, then there are d − 1 rays of length 2 and one ray of length n −

2d + 1 (Figure 6, right). The Merrifield-Simmons index of the resulting tree is

3d−1Fn−2d+3 + 2d−1Fn−2d+2, the Hosoya index is 2d−2((d + 1)Fn−2d+2 + 2Fn−2d+1).

. . .

. . .

. . .
...

Figure 6: The trees described in Theorem 5: d ≥ n−1
2

(left), d < n−1
2

(right).

Note that the vertex of maximum degree is unique, while all other vertices have degree

1 or 2, so as to make the tree as “path-like” as possible. The result for the minimum

Hosoya index and maximum Merrifield-Simmons index appears to be much less intuitive:

a partial solution to this problem was found by Lv and Yu [68] for trees with large

maximum degree (at least one third of the number of vertices), the general problem was

settled by Heuberger and one of the authors of this survey [32]:



Theorem 6 ([32]) Given the number n of vertices and the maximum degree d ≥ 3, the

tree that minimizes the Hosoya index and maximizes the Merrifield-Simmons index has

the following shape:
. . .

. . . . . . . . .

B0,1 B0,2 B0,d−1 Bℓ−1,1 Bℓ−1,2 Bℓ−1,d−1 Bℓ,1 Bℓ,2 Bℓ,d

with Bk,1, . . . , Bk,d−1 ∈ {Ck, Ck+2} for 0 ≤ k < ℓ and

• either Bℓ,1 = · · · = Bℓ,d = Cℓ−1

• or Bℓ,1 = · · · = Bℓ,d = Cℓ

• or Bℓ,1, . . . , Bℓ,d ∈ {Cℓ, Cℓ+1, Cℓ+2}, where at least two of Bℓ,1, . . . , Bℓ,d equal Cℓ+1.

Here, Ck denotes a complete (d − 1)-ary tree of height k − 1 (C0 is an empty tree, C1 is

a single vertex, and Ck is obtained by attaching d− 1 copies of Ck−1 to a common root).

See Figure 7 for an example.

Figure 7: The tree described in Theorem 6 for d = 4 and n = 69.

There is no simple closed formula for either the Merrifield-Simmons index or the Hosoya

index of the tree described in Theorem 6. For a more precise description, further discussion

of the properties and construction of the trees described in Theorem 6, see [33]. For trees

with more general degree restrictions, [94] provides an algorithmic approach.

2.2.4 Trees with matchings of a given size or given bipartition

It is clear that any graph with a matching M of size m has at least 2m matchings (all

subsets of M). Hence it is natural to expect that a tree with a large matching has

large Hosoya index. Note also that the star, which minimizes the Hosoya index, only

has matchings of size at most 1, while the path has a perfect matching (if the number of

vertices is even). These observations led Hou to investigate the class of trees with n vertices



and a matching of size (at least) m: in his paper [50], he characterizes the trees within

this class with smallest and second-smallest Hosoya index; interestingly, the minimum is

attained for the d-pode (called a “spur” by Hou) that also occurs in Theorem 5:

Theorem 7 ([50]) Among all trees with n vertices and an m-matching (1 ≤ m ≤ n
2
), the

minimum of the Hosoya index, which is 2m−2(2n−3m+3), is attained for the (n−m)-pode

with m − 1 rays of length 2 and n − 2m + 1 rays of length 1 (see Figure 6, left).

This result was extended by Ye et al., who determined the trees with third-smallest [107],

fourth-smallest and fifth-smallest [106] Hosoya index. On the other hand, one can ask the

analogous question how large the Hosoya index of a tree can be if the tree does not have

a large matching. A result in this direction is due to Ou [78], characterizing trees without

a perfect matching that maximize the Hosoya index: they are essentially paths with an

additional edge attached in the middle.

Finally, let us mention a somewhat isolated result by Ye and Chen [108] that characterizes

the trees with smallest and second-smallest Hosoya index among all trees with a given

bipartition (i.e., the sizes of the two color classes in the unique 2-coloring of a tree).

2.3 Treelike graphs

Many of the methods that can be applied to the study of trees work just as well for graphs

that are similar to trees in a certain respect. Therefore it is not surprising that treelike

graphs have been investigated quite extensively in the literature.

2.3.1 Forests

The connected components of a forest are trees, and so the methods for trees apply quite

directly. While forests might be a very natural generalization of trees from a graph-

theoretical point of view, they are less important in chemistry, where typically only con-

nected structures are considered. The only reference in the literature where forests have

been treated explicitly is the paper by Lin and Lin [63] (see Section 2.2), in which all

forests on n vertices with Merrifield-Simmons index ≥ 2n−1 +1 are determined (either one

star and an arbitrary number of isolated vertices or two isolated edges and an arbitrary

number of isolated vertices). It is not difficult to see that any graph that contains a

cycle has Merrifield-Simmons index ≤ 2n−1, and so these forests are also extremal among

arbitrary graphs of order n.

2.3.2 Unicyclic graphs

Apart from trees, unicyclic graphs have certainly received most attention in the litera-

ture, which is a consequence of the fact that they are very similar to trees (a unicyclic



graph is obtained from a tree by adding an edge), and many useful auxiliary results and

methods can still be used. As in the case of trees, several additional restrictions have

been considered as well (e.g., unicyclic graphs with fixed diameter). A particularly inter-

esting additional parameter that does not exist for trees is the girth, i.e., the length of

the (unique) cycle. The following theorem (or parts thereof) occurs in several papers:

Theorem 8 ([10, 79, 81, 83, 99, 100, 109]) Among all unicyclic graphs of order n

and girth r, the maximum of the Merrifield-Simmons index (which is 2n−rFr+1 + Fr−1)

and the minimum of the Hosoya index (which is (n−r+1)Fr +2Fr−1) are attained by the

graph that results from attaching n−r leaves to a single vertex of a cycle Cr (see Figure 8,

left). Similarly, the maximum of the Hosoya index (which is Fn−r+2Fr + 2Fn−r+1Fr−1)

and the minimum of the Merrifield-Simmons index (which is Fn−r+2Fr+1 + Fn−r+1Fr−1)

are attained by the graph that results from identifying one end of a path of length n − r

(n − r + 1 vertices) with one of the vertices of a cycle Cr (see Figure 8, right).

...

. . .

Figure 8: The graphs described in Theorem 8.

Second- and third-smallest or (-largest) and even further values have been determined as

well in some of the cases: see [10, 79, 81, 99] and in particular the paper by Ye et al.

[109], in which the first ≈ r
2

unicyclic graphs of given order n and girth r with respect to

the Merrifield-Simmons index (i.e., the graphs with largest, second largest, . . . Merrifield-

Simmons index) are characterized as well as the last ≈ r
2

with respect to the Hosoya

index; the two lists essentially coincide. From Theorem 8, it is not difficult to deduce the

following result:

Theorem 9 ([10, 79, 81, 83]) Among all unicyclic graphs of order n, the maximum of

the Merrifield-Simmons index and the minimum of the Hosoya index (which are 3·2n−3+1

and 2n−2 respectively) are attained for the graph that results from attaching n−3 leaves

to a triangle (the only exception being n = 4, in which case the cycle C4 also maximizes

the Merrifield-Simmons index). On the other hand, the maximum of the Hosoya index

and the minimum of the Merrifield-Simmons index (Fn+1 +Fn−1 in both cases) is attained

for the cycle Cn; in the case of the Merrifield-Simmons index, the graph that results from

attaching a path to a triangle attains the maximum as well.



For the maximum of the Merrifield-Simmons index and the minimum of the Hosoya index,

this was also obtained by Yan et al. [105] as a corollary of a slightly different result: in

their paper, unicyclic graphs with a given number k of leaves are studied. It turns out

that under this restriction, the extremal graph is also the one that is shown in Figure 8,

obtained by attaching k leaves to a cycle. This is further generalized for the minimum of

the Hosoya index by Hua [51], who considers the number of leaves and the girth as two

simultaneous parameters. Theorem 9 itself has also been extended further, in particular

for the minimum of the Hosoya index: up to the sixth-smallest value, see [58]. Yet another

problem regarding unicyclic graphs was studied by Li and Zhu:

Theorem 10 ([59]) Among all unicyclic graphs with order n and diameter d ≥ 4, the

graph that maximizes the Merrifield-Simmons index is obtained by attaching a path of

length d−3 to one of the vertices of a 4-cycle C4 and n−d−1 leaves to the opposite vertex

of this cycle (see Figure 9). Its Merrifield-Simmons index is 2n−d−1(2Fd−1 + Fd+1) + Fd.

. . .
...

Figure 9: The graph described in Theorem 10.

For d = 3, the graph described in Theorem 10 is still extremal, but not unique any longer.

Finally, let us mention a result by Hua [52], who considers “fully loaded” unicyclic graphs

(i.e., every vertex of the cycle has degree ≥ 3): the minimum Hosoya index within this

class is attained for a graph that results from a 3-cycle C3 by attaching n − 5 leaves to

one of the three vertices of the cycle and one leaf to each of the two others.

Finally, a result by Pedersen and Vestergaard [84] deserves to be mentioned: if the girth r

and the maximum distance h of a vertex from the unique cycle are fixed, the maximum of

the Merrifield-Simmons index is attained for a graph that results from attaching n−r−h

single edges as well as a path of length h to one of the vertices of a cycle Cr.

2.3.3 Bicyclic graphs

Bicyclic graphs or (n, n + 1)-graphs (i.e., graphs whose cyclomatic number is 2, so that

the number of edges is exactly the number of vertices plus one) have been the object of

study of a series of articles by Deng and coauthors [7, 8, 9, 11]; the collected main results

of these four papers read as follows:



Theorem 11 ([7, 8, 9, 11]) The maximum of the Merrifield-Simmons index among all

(n, n + 1)-graphs is 5 · 2n−4 + 1, and it is attained for a graph that results from a star

by connecting one of the leaves to two other leaves (see Figure 10). The same graph

minimizes the Hosoya index (with a value of 3n−4). On the other hand, the minimum of

the Merrifield Simmons is attained for a graph that consists of two 3-cycles, connected by

a path of length n − 5 (the Merrifield-Simmons index of this graph, shown in Figure 11,

left, is 5Fn−2), while the graph that maximizes the Hosoya index results from identifying

two edges of a cycle of length 4 and a cycle of length n− 2 respectively (Figure 11, right).

Its Hosoya index is Fn+1 + Fn−1 + 2Fn−3.

...

Figure 10: One of the graphs described in Theorem 11.

. . .

. . .

. . .

Figure 11: Two of the graphs described in Theorem 11.

It is quite notable that the graphs that maximize the Hosoya-index and minimize the

Merrifield-Simmons index do not coincide in this case, as opposed to all other examples

we have encountered so far. Very similar results were obtained by Startek et al. [92], who

studied graphs with two elementary (disjoint) cycles.

2.3.4 Quasi-trees

Quasi-trees are obtained by adding a single vertex to a tree and connecting it to some of

the vertices of the tree. This produces another possible generalization of unicyclic graphs.

Quasi-trees are studied at length in a recent paper by Li et al. [57]: it turns out that

the minimum of the Merrifield-Simmons index and the maximum of the Hosoya index

are attained for the fan, a graph that results from connecting an additional vertex to all

vertices of a path; see Figure 12. If the number of vertices is n, the respective values are

Fn+1+1 (Merrifield-Simmons index) and (n+4)Fn+2nFn−1

5
(Hosoya index). The maximum of

the Merrifield-Simmons index and the minimum of the Hosoya index, on the other hand,

are obtained for the star yet again. If the degree of the added vertex is assumed to be

≥ 2, the extemal graph is the same as for unicyclic graphs (compare Theorem 9).



. . .

Figure 12: The extremal quasi-tree.

2.4 Hexagonal chains and general polygonal chains

Hexagonal systems play an important role in mathematical chemistry as natural repre-

sentations of benzenoid hydrocarbons. In particular, hexagonal chains have been treated

in the literature. The first main result concerning the extremal problem for the class of

hexagonal chains occurs in a paper by one of the present authors [22]:

Theorem 12 ([22]) Among all hexagonal chains consisting of n hexagons, the linear

chain (Figure 13) maximizes the Merrifield-Simmons index and minimizes the Hosoya

index.

Figure 13: The linear hexagonal chain of length 5.

The analogous result for the minimum of the Merrifield-Simmons index and the maximum

of the Hosoya index was conjectured by one of the authors of this survey in [22] and proven

by Zhang [115]:

Theorem 13 ([115]) Among all hexagonal chains consisting of n hexagons, the zigzag

chain (Figure 14) maximizes the Merrifield-Simmons index and minimizes the Hosoya

index.

Figure 14: The zigzag chain of length 5.

These results were further generalized in various directions: the second-smallest (-largest)

values were determined [116] as well as the corresponding extremal chains, and it was



shown that the linear chain is still optimal if catacondensed benzenoids are considered

(which allow branching, as opposed to chains), see [117]. A very surprising result due to

Zhang and Zhang [118] states that the linear chain and the zigzag chain are even extremal

if the number of independent sets or edges of any fixed size k (and not just the sum over

all k) are considered.

Further generalizations include those by Shiu et al. [90], who consider k∗-cycle resonant

hexagonal chains: in the recursive construction of hexagonal chains, a new hexagon is

attached in one of three possible positions—left, middle, right—to the last hexagon of

an existing chain; k∗-cycle resonant hexagonal chains are essentially those for which only

“left” or “right” is allowed. The linear chain does not belong to this class, its place is

taken over by the helicene chain (“left” at every step or “right” at every step).

Shiu [89] considers hexagonal spiders (which consist of a central hexagon to which three

chains are attached), and Ren and Zhang [87, 88] generalize the above results to double

hexagonal chains. Chains comprising of other types of polygons (such as squares, pen-

tagons or octagons rather than hexagons are perhaps a little less natural from a chemical

point of view; however, analogous results hold, see [3, 112, 113] for details.

2.5 Other classes of graphs

From a purely graph-theoretical point of view, but perhaps also considering chemical

applications, there are many other classes of graphs that can be studied. One such

example is a paper by Alameddine [1], in which maximum and minimum of the Merrifield-

Simmons index are determined for maximal outerplanar graphs (which are equivalent

to triangulations of polygons). Various classes of graphs are studied by Pedersen and

Vestergaard in [84], for instance connected bipartite graphs: the maximum and minimum

of the Merrifield-Simmons index are obtained for the star and the complete bipartite

graph whose two parts are equal in size (or differ at most by one if the total number of

vertices is odd). Another remarkable result proven in [84] is the fact that the maximum

of the Merrifield-Simmons index for connected claw-free graphs is attained for the path

(note that one the other hand, the path minimizes the Merrifield-Simmons index within

the class of trees).

3 Useful auxiliary results and methods

There are various helpful lemmas and auxiliary results that occur frequently in the litera-

ture and can be applied to several different problems, usually even for both the Merrifield-

Simmons index and the Hosoya index, and sometimes even for other indices (see [62], [65]

for notable contributions towards a unified theory). This section is devoted to some of



the most important techniques that have been used to obtain the results described in the

preceding section. At the end of this section, a general approach that has proven useful

in many instances is described.

3.1 Explicit and recusive formulas

The Hosoya index of a graph G can be written as the permanent of the matrix I + A,

where A is the adjacency matrix of G and I the identity matrix. While permanents

are not particularly convenient for computational purposes, they often serve as auxiliary

tools, for instance to obtain recursive relations for the Hosoya index, see [49, 51, 52, 78,

79, 80, 81, 103, 106, 107].

Quite frequently, recursive formulas for the Merrifield-Simmons index or the Hosoya index

are needed in order to determine explicit formulas for specific graphs. The most important

recursive properties of the two indices are summarized in the following theorem.

Theorem 14 If G1, G2, . . . , Gr are the connected components of a graph G, then

σ(G) =
r∏

i=1

σ(Gi)

and

Z(G) =
r∏

i=1

Z(Gi).

Furthermore, the following recursive formulas hold:

1.

σ(G) = σ(G \ v) + σ(G \ N [v]),

where N [v] denotes the closed neighborhood of a vertex v (v together with all its

neighbors),

2.

Z(G) = Z(G \ v) +
∑
w∼v

Z(G \ {v, w}),

where the sum is taken over all neighbors w of v,

3.

σ(G) = σ(G \ e) − σ(G \ (N [v] ∪ N [w])),

where v and w are the ends of an edge e,

4. and

Z(G) = Z(G \ e) + Z(G \ {v, w})

where v and w are the ends of an edge e.



See [28] for a standard reference. Even though the recursive formulas are easy to prove

(to obtain 1., for instance, distinguish between independent sets that contain v and those

that do not contain v), they are crucial in the proofs of most of the results presented in the

preceding section. Quite often, these formulas together with elementary methods such as

induction or the trivial fact that deleting edges results in a decrease of the Hosoya index

and an increase of the Merrifield-Simmons index are sufficient, if applied in the right way

(see [1, 3, 4, 7, 8, 9, 10, 11, 12, 22, 32, 51, 52, 53, 57, 59, 61, 63, 65, 67, 68, 82, 84, 85, 86,

87, 89, 90, 92, 93, 98, 99, 100, 101, 103, 105, 109, 110, 111, 112, 115, 116, 117, 119, 120]

for various examples). They are also frequently used to determine explicit formulas for

the Merrifield-Simmons index or Hosoya index of specific graphs. It should finally be

mentioned that analogous formulas even hold more generally for associated polynomials

(such as the matching polynomial, see [16]).

3.2 Replacing parts of a graph

The path and the star are the extremal trees with respect to both indices, as stated in

Section 2.2. However, an even stronger theorem holds, which plays a major role in the

analysis of treelike graphs. It can be stated as follows:

Theorem 15 Suppose that G is a connected graph and T an induced subgraph of G

such that T and G only share a cut vertex v and T is a tree. If G1 and G2 are the graphs

that result from replacing T by a star and a path respectively (see Figure 15), then the

inequalities

σ(G1) ≥ σ(G) ≥ σ(G2)

and

Z(G2) ≤ Z(G) ≤ Z(G2)

hold. Both inequalities are strict unless G is isomorphic to either G1 or G2.

G

v

T

G1

G2

...

. . .

Figure 15: Replacing a tree by a star or a path.



This theorem is very useful to reduce the set of potentially extremal graphs considerably,

see [4, 7, 8, 9, 10, 11, 52, 53, 59, 66, 98, 100, 101, 105, 109, 119] for various applications.

Note also that those graphs within a given class of trees or treelike graphs that maximize

the Merrifield-Simmons index or minimize the Hosoya index typically contain large stars

(see Sections 2.2 and 2.3). Analogously, the minimum of the Merrifield-Simmons index

and the maximum of the Hosoya index are typically attained for graphs that contain long

paths. Things tend to become much harder if one imposes restrictions that do not allow

for large stars or long paths (e.g. degree restrictions, as in Section 2.2.3, or restricted

diameter, as in Section 2.2.2). The notion of so-called α-optimal trees introduced in [94]

is an attempt to extend Theorem 15 to such cases.

3.3 Moving parts of a graph

Another typical auxiliary result considers the case that parts of a graph (typically, trees

attached to a cut vertex) are moved from one place to another. The following theorem

provides information on the behavior of the Merrifield-Simmons index and the Hosoya

index under such transformations:

Theorem 16 Suppose G is a connected graph and H1, H2 are (nonempty) induced sub-

graphs that only share a cut vertex (v1 resp. v2) with the rest of the graph. Let G1 denote

the graph that results from moving H1 from v1 to v2, and let G2 denote the graph that

results from moving H2 from v2 to v1 (see Figure 16). Then the following statements hold:

• Either σ(G1) > σ(G) or σ(G2) > σ(G).

• Either Z(G1) < Z(G) or Z(G2) < Z(G).

G

v1 v2

H1 H2

G1

G2

H1

H2

H1

H2

Figure 16: Moving parts of a graph.



A proof that even includes other indices is given in [65]. In the literature, this theorem

appears in various variants and special cases (for example in the case that H1 and H2 are

stars [8, 11, 66, 67, 109, 110]). See also [57, 59, 94, 105] for applications of this “transfer

theorem”, which is usually used to rule out specific substructures in extremal graphs. A

related result that is specifically geared towards trees with fixed maximum degree can be

found in [32].

“Sliding along a path” is another recurring aspect that deserves to be mentioned. The

following theorem appears in [119] for the Merrifield-Simmons index, and the (almost

completely analogous) proof can be found in [98]; see also [7, 9, 10, 99] for further appli-

cations.

Theorem 17 Let G be a connected graph with at least two vertices, and choose a vertex

u ∈ V (G). P (n, k,G, u) then denotes the graph that results from identifying u with the

vertex vk of a simple path v1, . . . , vn (Figure 17). Write n as n = 4m + i, i ∈ {1, 2, 3, 4},

m ≥ 0. Then the inequalities

Z(P (n, 2, G, u)) < Z(P (n, 4, G, u)) < . . . < Z(P (n, 2m + 2l, G, u)) <

Z(P (n, 2m + 1, G, u)) < . . . < Z(P (n, 3, G, u)) < Z(P (n, 1, G, u))

and

σ(P (n, 2, G, u)) > σ(P (n, 4, G, u)) > . . . > σ(P (n, 2m + 2l, G, u)) >

σ(P (n, 2m + 1, G, u)) > . . . > σ(P (n, 3, G, u)) > σ(P (n, 1, G, u)),

hold, where l = ⌊ i−1
2
⌋.

. . . . . .
v1 v2 vn−1 vnvk = u

G

Figure 17: Sliding along a path.

As in the case of the previous theorem, some variants and related results exist, see for

instance [67, 99, 105, 110]. In particular, the following result was repeatedly used by

Deng et al. [7, 9, 10] in their study of (n, n + 1)-graphs (for convenience, we use a slightly

different notation):

Theorem 18 Let G be a connected graph with at least three vertices, and choose two

vertices u1, u2 ∈ V (G) that are not neighbors in G. P (n, k, l, G, u1, u2) then denotes the



graph that results from identifying u1 with the vertex vk and u2 with the vertex vl of a

simple path v1, . . . , vn (Figure 18). For any 1 < k < l < n, at least one of the inequalities

σ(P (n, k, l, G, u1, u2)) > σ(P (n, 1, l − k + 1, G, u1, u2)),

σ(P (n, k, l, G, u1, u2)) > σ(P (n, n + k − l, n,G, u1, u2))

and at least one of the inequalities

Z(P (n, k, l, G, u1, u2)) < Z(P (n, 1, l − k + 1, G, u1, u2)),

Z(P (n, k, l, G, u1, u2)) < Z(P (n, n + k − l, n,G, u1, u2))

must hold.

. . . . . .
v1 v2 vn−1 vnvk = u1 vl = u2

G

Figure 18: Sliding along a path, second part.

3.4 Outline of a general approach

Let us finally describe the approach that is typically followed in order to obtain the results

described in Section 2. It is only a rough outline, of course, but it applies to most of the

cases that have been treated in the literature, and we believe that many other problems

of a similar flavor can be solved along these lines.

• Aim to rule out certain substructures and generally reduce the set of potentially

extremal graphs within the prescribed class. The auxiliary results presented in the

Section 3.2 and 3.3 often prove useful in this regard.

• Once the set of candidates has been reduced to a simpler class (or classes) of graphs,

one can often establish explicit formulas (depending on one or two parameters) for

the Merrifield-Simmons index or the Hosoya index of the remaining cases to be

considered. The recursive relations presented in Section 3.1 are usually used for this

purpose.

• Determine the maximum or minimum from these explicit formulas. This process can

often be rather technical and frequently involves identities for Fibonacci numbers

(since they occur in the formulas for Merrifield-Simmons index and Hosoya index of

paths and cycles).



• At this stage, the remaining number of candidate graphs should be reduced con-

siderably, so that only a few different graphs need to be compared. This yields

the graph within the originally prescribed class of graphs that maximizes (mini-

mizes) the Merrifield-Simmons (Hosoya) index, and in some cases also the graph

with second-largest (-smallest) index value or even more.

4 Open problems

In spite of the fact that there is a substantial amount of literature on the topic of maxi-

mizing or minimizing the Merrifield-Simmons index and the Hosoya index (as can be seen

from this survey), there are still many interesting open questions for further study. Let

us mention the following problems:

• It seems to be difficult to obtain results analogous to Theorems 3 and 4 for the

minimum of the Merrifield-Simmons index and the maximum of the Hosoya index

among trees with a given number of leaves or given diameter. However, partial

results are available, so the problem might not be totally intractable, and results in

this direction would definitely be interesting.

• Little is also known about the case that two restrictions are imposed at the same

time (e.g. fixed diameter and fixed number of leaves), so this might be another

worthwhile problem to study.

• While the main questions are settled for trees with prescribed maximum degree

(Section 2.2.3), it is also natural to consider other degree restrictions. It might

even be possible to characterize the trees with a prescribed degree sequence that

maximize or minimize the two indices.

• If the aforementioned questions can be answered for trees, then it is also natural to

consider the analogous questions for treelike graphs (such as unicyclic graphs).

• While hexagonal chains have been studied quite extensively (see Section 2.4), not

much is known about hexagonal systems that are not necessarily chains. If hexagons

are allowed to “cluster”, new phenomena might arise.

• At least from a purely graph-theoretical point of view, there are many other classes of

graphs to be studied, even if they are perhaps not chemically relevant. For instance,

nothing seems to be known about general planar graphs (even though there exists

a result for the special subclass of outerplanar graphs, see Section 2.5).



• In several instances, it has been shown that the extremal graphs within a given class

are even extremal with respect to the number of independent sets (or matchings)

of any fixed size, which is a much stronger property. For some cases, this has been

conjectured, but not proven (for instance the trees described in Theorem 6, see [33]).

Of course this list only contains some interesting problems for further study, and there

might be many other worthwhile questions to consider. The Merrifield-Simmons index

and the Hosoya index have been the focus of many interesting articles in the past, and

will certainly also lead to further interesting investigations in the future.
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