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Abstract. We describe a general construction principle for a class of self-similar graphs. For

various enumeration problems, we show that this construction leads to polynomial systems of

recurrences and provide methods to solve these recurrences asymptotically. This is shown for
different examples involving classical self-similar graphs such as the Sierpiński graphs. The

enumeration problems we investigate include counting independent subsets, matchings and con-
nected subsets.

1. Introduction

Counting sets satisfying a fixed property in graphs ranges among the classical tasks of com-
binatorics. There is a vast amount of literature on this kind of combinatorial problems for various
classes of graphs, especially for trees, by different authors. We note for instance the following set
counting problems which have been studied in the past:

• the number of independent or maximal independent subsets [7, 8, 18, 16, 17, 26, 29],
• the number of subtrees of a tree [18, 25, 33, 37],
• the number of matchings or maximal matchings [6, 10, 11, 18],
• the number of chains/antichains in a tree [18, 25].

All these graph invariants reflect the structure of a graph in some way, and therefore, some of
them are even of interest in theoretical chemistry for the study of molecular graphs (see [32, 38]).
For example, the number of independent subsets is called Merrifield-Simmons-index, the number
of matchings is known as Hosoya-index in chemistry. It was shown that both correlate well with
physicochemical properties of the corresponding molecules (see [13, 27]).

A special type of self-similar graph that has been of interest is the complete t-ary tree [19]. It
is constructed in the following way:

• Start with a single vertex (the root) to obtain the level-zero tree T0,
• take t copies of Tn and connect their roots to a new common root to obtain Tn+1.

A natural reason to study complete t-ary trees is that they are usually extremal with respect to
the cited graph invariants among all trees of bounded degree. The number of independent sets in
these graphs has been investigated in [16], the number of subtrees in [37]. In this paper, the stated
way of construction is formalized and generalized.

Other examples of graphs with self-similar properties – even though they are not among the
class generated by our construction principle – that appear in applications are the rectangular and
hexagonal grid graphs. For example, the growth of the number of independent sets in a m×n-grid
is of interest in statistical physics (see [5]). It is known that the number of independent sets in a
(n,m)-grid graph grows with αmn, where α = 1.503048082 . . . is the so-called hard square entropy
constant. The bound for this constant was successively improved by Weber [39], Engel [8] and
Calkin and Wilf [7].
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The calculation of asymptotic formulas of this type is the main aim of this paper – usually,
in our examples, we will observe a doubly exponential growth, where the implied constants can
only be calculated numerically. Recursively defined sequences with doubly exponential growth
have been investigated, for instance, by Aho and Sloane [1] and Ioanescu and Stanica [14]. The
formula for the sequence defined by x0 = 1, xn = (xn−1 + 1)2 given in [1] (xn = bα2nc − 1, where
α = 2.258518 . . . ) has been used by Székely and Wang to determine the number of subtrees in a
complete binary tree [37].

In our final example connected subsets in finite Sierpiński graphs are counted. Besides the
usual doubly exponential growth, an unusual exponential factor appears in the asymptotic formula.
The base of this exponential factor is apparently the same as the resistance scaling factor of the
infinite Sierpiński graph, see [3] for the definition of this constant. This indicates connections
between the number of connected subsets in finite self-similar graphs and energy forms, Laplacians
and random walks on the associated infinite graphs.

Fractal spaces, especially the Sierpiński gasket, were first considered as interesting state spaces
in stochastics in physical literature, see for example [2, 30, 31]. This work was continued by the
rigorous development of Brownian motion on self-similar sets, see [3] and the references therein.
In all this research the approximation of fractal sets by fractal-like graphs is of vital importance.
Therefore graphs obeying some fractal law were studied in many respects: See for example [12,
15, 40] and the references therein for publications on spectra of fractal-like graphs, analysis and
stochastics.

The notion of graphical substitution is the basic construction principle for fractal-like graphs;
however, there is no unified theory; see [20, 24, 34]. In the following we define a very general
construction scheme, which can be applied to many classical examples, including self-similar graphs
and trees with finitely many cone-types, see [28, 34]. The self-similar nature of graphs in this class
is then the starting point for investigations on the aforementioned counting problems. It turns out
that the substitution procedure translates to dynamical systems for the combinatorial quantities.

2. Construction

We recall some basic definitions about graphs: Graphs X = (V X,EX) with vertex set V X
and edge set EX are always supposed to be undirected, without loops or multiple edges. Vertices
x and y are adjacent if {x, y} is an edge in EX. The degree degX(x) of x is the cardinality of
vertices in V X being adjacent to x.

Let X be a graph and ∼ be an equivalence relation on V X. We write V X/∼ for the set of
all equivalence classes of ∼ and denote by v the equivalence class of the vertex v ∈ V X. Then the
graph Y = X/∼ is defined by V Y = V X/∼ and

EY = {{v, w} : v, w ∈ V X, {v, w} ∈ EX}.

In the following we describe a substitutional graph construction, which resembles the con-
struction of graph-directed self-similar sets: Fix a number m ∈ N and let the following data be
given:

• Initial graphs X1, . . . , Xm.
• Distinguished vertices on each initial graph. For k ∈ {1, . . . ,m} the distinction is given as

a map φk : {1, 2, . . . , θ(k)} → V Xk, where θ(k) ≥ 1 is the number of distinguished vertices
in Xk.

• Model graphs G1, . . . , Gm.
• A map ψk : {1, 2, . . . , θ(k)} → V Gk, which defines θ(k) distinguished vertices on Gk.
• The number s(k) ≥ 1 of substitutions associated to the model graph Gk for k ∈ {1, . . . ,m}

and a map τk : {1, . . . , s(k)} → {1, . . . ,m}, which describes the type of substitution. Last
but not least, one-to-one maps σk,i : {1, . . . , θ(τk(i))} → V Gk for k ∈ {1, . . . ,m} and
i ∈ {1, . . . , s(k)}, which describe each substitution.



ENUMERATION PROBLEMS 3

With this data we inductively construct m sequences (Xk,n)n≥0 of graphs and maps φk,n :
{1, . . . , θ(k)} → V Xk,n, which define distinguished vertices of the graph Xk,n: For k ∈ {1, . . . ,m}
and n = 0 set Xk,0 = Xk and φk,0 = φk. Now fix n > 0 and k ∈ {1, . . . ,m}. For i ∈ {1, . . . , s(k)}
let Zk,n,i be an isomorphic copy of the graph Xτk(i),n−1, where the isomorphism is given by γk,n,i :
Xτk(i),n−1 → Zk,n,i. Additionally, we require that the vertex sets V Gk and V Zk,n,1, . . . , V Zk,n,s(k)

are mutually disjoint. Now let Yk,n be the disjoint union of the graphs Gk and Zk,n,1, . . . , Zk,n,s(k)

and define the relation ∼ on the vertex set V Yk,n to be the reflexive, symmetric and transitive hull
of

s(k)⋃
i=0

{
{σk,i(j), γn,k,i(φk,n−1(j))} : j ∈ {1, . . . , θ(τk(i))}

}
⊆ V Yk,n × V Yk,n.

Then Xk,n = Yk,n/∼ and the map φk,n is defined by φk,n(i) = ψk(i) ∈ V Xk,n. Furthermore, we
call the subgraph Zk,n,i of Xk,n (which is isomorphic to Xτk(i),n−1) the i-th part of Xk,n.

Remark. Note that edges of two distinct graphs Zk,n,i and Zk,n,j may be amalgamated in Xk,n.
In the rest of this paper we require that this is not case. For example, this can be achieved if

|σk,i({1, . . . , θ(τk(i))}) ∩ σk,j({1, . . . , θ(τk(j))})| ≤ 1

holds for any k and distinct i, j ∈ {1, . . . , s(k)}. This means, that two distinct parts of Xk,n never
have more than one vertex in common.

G1
0

1 2

34 X1,1 X1,2

Figure 1. Model graph and X1,1, X1,2.

Example 1. Fix some integers p, q ∈ N. Let m = 1, θ(1) = 2 and X1 = Kp. Let x, y ∈ V X1 be
two different vertices and set φ1(1) = x and φ1(2) = y. Let G1 be given by V G1 = {0, . . . , q} and
EG1 = ∅, and define ψ1(1) = 1 and ψ1(2) = 2. Finally, let s(1) = q and σ1,i(1) = 0, σ1,i(2) = i for
i ∈ {1, . . . , q}. See Figure 1 for the case p = q = 4. The associated infinite graphs were studied in
[20, 21, 22] concerning growth, spectral properties and behavior of random walk.
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Figure 2. Model graph and X1,1, X1,2.

Example 2 (The loop-erased Schreier graph of the Fabrykowski-Gupta group). Let m = 1 and let
X1 = K3, where V X1 = {1, 2, 3}. Let θ(1) = 3 and φ1(i) = i for i ∈ {1, 2, 3}. Furthermore, define
G1 by

V G1 = {x11, x12, x13, x21, x22, x23, x31, x32, x33},
EG1 =

{
{x11, x21}, {x21, x31}, {x31, x11}

}
,
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and set ψ1(i) = xi2 for i ∈ {1, 2, 3}. Finally we set s(1) = 3 and σ1,i(j) = xij . See Figure 2 for a
visualization of the model graph G1 and X1,1, X1,2. The Fabrykowski-Gupta group was introduced
in [9], the corresponding Schreier graph was studied in [4]; see also [12].

o1

x1,1 x1,2

type 1 type 2

G1
o2

x2,1 x2,2 x2,3

type 1 type 1 type 1

G2

Figure 3. The model graphs G1 and G2.

Example 3 (Trees with finitely many cone types). Let A = (aij) be an m ×m matrix with non-
negative integer entries. For k ∈ {1, . . . ,m} let Xk = ({x}, ∅), θ(k) = 1, and φk(1) = x. Further-
more, let Gk be a star with root ok ∈ V Gk and s(k) = ak1 + · · · + akm leaves {xk,1, . . . , xk,s(k)},
and let ψk(1) = ok. Finally, we set τk(j) = t if

t−1∑
i=1

aki < j ≤
t∑

i=1

aki

and σk,i(1) = xk,i. Then the graphs Xk,n constructed as above describe finite analoga of infinite
trees with finitely many cone types, see [28] and the references therein. Let A =

(
1 1
3 0

)
, then

Figure 3 shows a visualization of the substitution procedure.

G1

(2, 0, 0) (0, 2, 0)

(0, 0, 2)

(1, 1, 0)

(1, 0, 1) (0, 1, 1)

X1,0

X1,1

X1,2

Figure 4. Model graph and finite Sierpiński graphs.

Example 4 (Sierpiński graphs, see [35]). Let m = 1 and fix some d ∈ N0. We define X1 and G1 by

V X1 =
{
x = (x0, . . . , xd) ∈ Nd+1

0 :
d∑

i=0

xi = 1
}
, EX1 = {{x,y} : ‖x− y‖1 = 2}

and

V G1 =
{
x = (x0, . . . , xd) ∈ Nd+1

0 :
d∑

i=0

xi = 2
}
, EG1 = ∅,

respectively. Let θ(1) = d + 1 and φ1(i) = ei, ψ1(i) = 2ei, where ei is the i-th canonical basis
vector. In addition, let s(1) = d and σ1,i(j) = ei + ej . See Figure 4 for the case d = 3.

Example 5. Let m = 1 and let X1 be any finite connected graph with at least two vertices
x1, x2. We set θ(1) = 2 and define φ1(1) = x1 and φ2(1) = x2. Let G1 be any finite edge-
less graph with at least two vertices v1, v2 and define ψ1(1) = v1 and ψ1(2) = v2. Furthermore,
choose s(1) = s mutually distinct pairs of vertices (w1,1, w1,2), . . . , (ws,1, ws,2) in V G1 × V G1,
so that wj,1 6= wj,2 for j ∈ {1, . . . , s}, and define σ1,1(j) = wj,1 and σ1,2(j) = wj,2 for j ∈
{1, . . . , s}. We note that connectedness of the graphs X1,1, X1,2, . . . can be guaranteed if the pairs
(w1,1, w1,2), . . . , (ws,1, ws,2) induce a connected directed graph structure on G1. See Figure 5 for a



ENUMERATION PROBLEMS 5

w1,1 = v1

w1,3

v2 = w1,3

w2,i

G1

X1,0

X1,1

X1,2

Figure 5. Model graph and X1,0, X1,1, X1,2.

simple example in this class. Spectral properties of the associated infinite graphs were investigated
in [24].

3. Types of Enumeration Problems

Our aim will be to solve enumeration problems in graphs of the type we defined in the previous
section. We want to count the number of certain combinatorial objects (typically, sets of vertices
or edges) satisfying a given property, such as independency or connectivity. Our method of solving
these problems works for all properties satisfying some compatibility axioms which are presented
in this section; these axioms guarantee us that we can establish recurrence equations reflecting the
recursive construction of our graphs.

Let C(X) denote a family of combinatorial objects associated to a graph X. We want to count
the number of elements c ∈ C(Xk,n) (with the notation of the previous section) satisfying a certain
property P . The set of all these elements is denoted by C(Xk,n |P ). We suppose that for each
k ∈ {1, . . . ,m} there are finitely many properties Pk,r, r ∈ {1, . . . , Rk}, of elements in C(Xk,n) and
subsets

Bk,r ⊆ C(Gk)×
s(k)∏
i=1

{1, . . . , Rτk(i)},

so that P can be expressed in terms of Pk,r and there exists a bijective correspondence between

(1) C(Xk,n |Pk,r) and
⊎

(b,r1,...,rs(k))∈Bk,r

{b} ×
s(k)∏
i=1

C(Xτk(i),n−1 |Pτk(i),ri
).

Less formally spoken, the property Pk,r can be reduced to properties on the parts of Xk,n;
given (b, r1, . . . , rs(k)) ∈ Bk,r and objects c1, . . . , cs(k) belonging to the parts of Xk,n, so that
ci ∈ C(Xτk(i),n−1 |Pτk(i),ri

), one can construct a unique object c with property Pk,r from them,
and the correspondence is bijective. Note that the same s(k)-tuple (c1, . . . , cs(k)) may appear more
than once.

Example 6. We give a short example for illustration: let C(Xk,n) be the family of vertex subsets
of Xk,n, and let P (c) be the property that the set c is an independent set, i.e. there is no pair
of adjacent vertices in c. For the sake of notation set Θ(k) = {1, . . . , θ(k)}. Then we may define
our properties in the following way: for all k and all subsets S of Θ(k), let a set c ∈ C(Xk,n) with
property Pk,S be an independent set such that

c ∩ φk,n(Θ(k)) = φk,n(S).

Thus c contains exactly the distinguished vertices corresponding to elements of S. Clearly, P is
the union of all of these properties. For k ∈ {1, . . . ,m}, i ∈ {1, . . . , s(k)} and S ⊆ Θ(k) set

ρk,i(S) = {j ∈ Θ(τk(i)) : σk,i(j) ∈ ψk(S)}.
So ρk,i(S) corresponds to distinguished vertices of the i-th part ofXk,n, which are also distinguished
vertices in Xk,n itself. Then we define Bk,S by

Bk,S = C(Gk |Qk,S)×
s(k)∏
i=1

{T ⊆ Θ(τk(i)) : T ∩ ρk,i(Θ(k)) = ρk,i(S)}.
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Here, a set b with property Qk,S in Gk is an independent subset such that

b ∩ ψk,n(Θ(k)) = ψk,n(S).

An independent set c in Xk,n with property Pk,S induces an independent set b ∈ C(Gk) and
independent sets c1, . . . , cs(k) in all parts of Xk,n. By the choice of S, it is fixed for the distinguished
vertices of the i-th part whether they belong to ci or not, so the ci must satisfy properties of the
form Pτk(i),R. Conversely, given b ∈ C(Gk |Qk,S) and independent subsets in all parts of Xk,n

(with appropriately fixed distinguished vertices), one can construct a unique independent set with
property Pk,S from them.

A more intuitive description will be given in the examples of Section 5. The interested reader
may check that each of the following properties can be handled in a similar way and thus meets
with our requirements:

• matchings (independent edge subsets),
• connected subsets,
• subtrees or spanning subtrees,
• colorings,
• factors,
• vertex or edge coverings,
• maximal independent sets,
• maximal matchings.

The latter two need some additional care, but the reduction process works for them, too.

4. Polynomial recurrence equations

The benefit we take from the axioms of the preceding chapter is simple: it is easy now to derive
recursive relations for the cardinalities of the sets C(Xk,n |Pk,r). Let cn(k, r) := |C(Xk,n |Pk,r)|.
From the bijective correspondence (1) we immediately conclude that

cn(k, r) =
∑

(b,r1,...,rs(k))∈Bk,r

s(k)∏
i=1

cn−1(τk(i), ri)

for k ∈ {1, . . . ,m} and r ∈ {1, . . . , Rk}. Now, all cn(k, r) can be obtained from the initial values
c0(k, r) and this system of polynomial recurrence equations. In the following, we will show how to
obtain asymptotic properties of the sequences cn(k, r) from such a system.

Proposition 1. Let p : Rd → Rd be a non-linear polynomial function with non-negative coefficients
and c0 ∈ Rd, so that c0,i > 0 for all i ∈ {1, . . . , d}. Define the orbit sequence (cn)n≥0 by cn+1 =
p(cn) for n ∈ N0. We assume that cn,i tends to ∞ as n→∞ for all i ∈ {1, . . . , d} and cn,i � cn,j

as n→∞ holds for all i, j ∈ {1, . . . , d}. Then cn,i = exp(Kqn +O(1)) for all i ∈ {1, . . . , d}, where
q > 1 is the total degree of p and K > 0 is some constant.

Proof. Let p = (p1, . . . , pd) and choose k ∈ {1, . . . , d}, so that the total degree q of pk is strictly
larger than 1. By the conditions of the sequence (cn)n≥0 there are rn ∈ Rd, so that cn,i = rn,icn,k,
and the set {rn,i : n ∈ N0, i ∈ {1, . . . , d}} is bounded from below and above by positive constants.
In the following we use multi-index notation: let

pk(x) =
∑
i

aixi.

This implies

cn+1,k = pk(cn) =
q∑

j=0

bn,jc
j
n,k,
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where the coefficients bn,j are defined by

bn,j =
∑
|i|=j

airin.

Notice that {bn,q : n ∈ N0} is bounded from below and above by positive constants and that
{bn,j : n ∈ N0} is bounded above for all j < q. Write xn = log(cn,k), then

(2) xn+1 = qxn + dn,

where dn is given by

dn = log

(
q∑

j=0

bn,jc
j−q
n,k

)
.

Since cn,k tends to ∞, the numbers dn are bounded. Now Equation (2) implies

xn = qn

(
x0 +

n−1∑
`=0

d`

q`+1

)
= qn

(
x0 +

∞∑
`=0

d`

q`+1
+O(q−n)

)
.

Define K by

K = x0 +
∞∑

`=0

d`

q`+1
,

then cn,1 = exp(Kqn + O(1)) follows. This implies the statement. Furthermore, we remark that
the total degree of pi must be q for any i ∈ {1, . . . , d}. �

Remark. With the notation of the previous proof we notice that the asymptotic behavior of the
sequence (cn)n is mostly determined by those monomials of p of total degree q. By the previous
result there are vectors Cn ∈ Rd (bounded above and below) such that cn = Cn exp(Kqn). Now
write p = h + r, where all monomials of h have total degree q and the total degree of r is strictly
smaller than q. So h is a homogeneous polynomial of degree q. Then

Cn+1 exp(Kqn+1) = cn+1 = p(cn) = h(cn) + r(cn)

= h(Cn exp(Kqn)) + r(Cn exp(Kqn))

= exp(Kqn+1)h(Cn) +O(exp(K(q − 1)qn)).

This implies Cn+1 = h(Cn) + O(exp(−Kqn)). In order to obtain information about Cn we have
to study the dynamical system associated to the map h. The case r ≡ 0 is of special interest: on
the one hand it occurs in the given examples, on the other hand the error term disappears leading
to Cn+1 = h(Cn). Thus, in this case we have to investigate the dynamical behavior of h in the
projective space.

Proposition 2. Let p : Rd → Rd be a homogeneous polynomial of degree q > 1 with an attracting
fixed point C 6= 0. Let c0 ∈ Rd and define cn+1 = p(cn) for n ∈ N0. We assume that (cn)n≥0

defines a sequence in the projective space Pd−1 converging to C in Pd−1. Then cn = C exp(Kqn +
o(1)) for some K ∈ R.

Proof. As cn → C in Pd−1 there are rn 6= 0 such that rncn → C in Rd. Thus the sequence
εn = rncn − C converges to 0. Define un by un = p(C + εn) − C. As C is an attracting fixed
point of p, the sequence (un)n≥0 converges to 0, too. An easy computation yields

rq
n(C + εn+1) = rn+1(C + un).

There exists a k ∈ {1, . . . , d} with Ck 6= 0. Choose n0 sufficiently large, so that

dn =
Ck + εn+1,k

Ck + un,k

satisfies |dn − 1| < 1
2 for all n ≥ n0. Notice that dn → 1. This implies

log(rn) = q log(rn−1) + log(dn−1) = qn

(
q−n0 log(rn0) +

n−1∑
`=n0

log(d`)
q`+1

)
= −Kqn + o(1),
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where K is given by

K = −q−n0 log(rn0)−
∞∑

`=n0

log(d`)
q`+1

.

Therefore rn = exp(−Kqn + o(1)). Since rncn → C, we obtain cn = C exp(Kqn + o(1)). �

Remark. The last proposition can be generalized to the case of an attracting cycle C1, . . . ,Cm of
p. If the sequence (cn) is attracted by this cycle in Pd−1, then an adapted version of the result
above holds.

The preceding propositions give us the necessary tools to cope with a variety of set-counting
problems for classes of self-similar graphs. Unfortunately, they are not applicable to all conceivable
problems of that kind. In can be seen especially from the example of section 5.3 that there is a
vast variety of possibilities for the asymptotical behavior of a polynomial recurrence system.

5. Examples

5.1. Matchings, maximal matchings and maximum matchings. We turn to Example 2 of
Section 2 now. The sequence of graphs that was constructed in this example has some particularly
nice properties in connection with matchings, therefore, we present the problem of enumerating
the matchings on this graph here. First, we consider ordinary matchings.

Let m0,n be the total number of matchings in the level-n graph X1,n of the construction
described in Example 2 of Section 2. Furthermore, let m1,n be the number of matchings with the
property that a fixed vertex from the set of distinguished vertices is unmatched, and let m2,n be
the number of matchings with the property that two fixed vertices from the set of distinguished
vertices are unmatched. By symmetry, it is not relevant which of the distinguished vertices we
choose.

It is easy to see that m0,0 = 4, m1,0 = 2 and m2,0 = 1, and that the following system of
recurrence equations holds (we only have to consider four cases for the center triangle – either
none of the edges of the center triangle belongs to the matchings or one of the three belongs to it):

m0,n+1 = m3
0,n + 3m0,nm

2
1,n,

m1,n+1 = m2
0,nm1,n +m3

1,n + 2m0,nm1,nm2,n,

m2,n+1 = m0,nm
2
1,n +m0,nm

2
2,n + 2m2

1,nm2,n,

A straightforward induction shows us that m0,n = 2m1,n = 4m2,n holds for all n. This can also be
seen by an easy combinatorial argument:

Let v be one of the distinguished vertices (or any of the outermost vertices in the graph X1,n),
let v′ be its neighbor of degree two, and let w be its neighbor of degree four. Clearly, the number
of matchings containing the edge vv′ is the same as the number of matchings in which v and v′

are not matched at all. By symmetry, the number of matchings which match v is the same as the
number of matchings which match v′. Altogether, this shows that the number of matchings which
match v is exactly half of the total number of matchings.

The fact that the number of matchings which contain edges incident to two fixed distinguished
vertices is exactly 1

4 of the total number of matchings reflects the fact that the distinguished
vertices (and, generally, arbitrary pairs of non-adjacent vertices which belong to the same orbit as
the distinguished vertices) are independent with respect to the number of matchings – whether one
of the vertices is to be matched or not does not affect the fraction of matchings in which the other
is matched. This is due to the described bijections between matchings containing the edge vv′ and
those matching neither v nor v′ respectively matchings containing vw and those containing wv′.

Thus, we only have to consider the simple recurrence equation m0,n+1 = 7
4m

3
0,n and m0,0 = 4,

whose solution is given by

m0,n =
2√
7
(2
√

7)3
n

.
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The first values of this sequence are 4, 112, 2458624, 26008445689991790592. So if E = 1
2 (3n+2−3)

is the number of edges, (
16
7

)1/328E/9

of the 2E edge subsets are independent. The constant 281/9 is approximately 1.4480892743 . . .

Now, let us consider maximal matchings, i.e. matchings which cannot be extended any more.
A little more care is needed for them, and some more variables as well. Again, we only have to
consider two distinguished vertices and four cases for the edges in the middle triangle, but we have
to consider three types of matchings with respect to a distinguished vertex v = φ1,n(i):

• maximal matchings which match v,
• maximal matchings which leave v unmatched,
• matchings (not necessarily maximal) which leave v unmatched, with the additional prop-

erty that every edge that can be added to the matching is incident to v.

Let us mark these properties by the numbers 0,1 and 2 respectively, and define sequences M00,n,
M01,n, . . . ,M22,n, where, for instance, M02,n denotes the number of matchings in X1,n with the
property that they contain an edge incident to one fixed distinguished vertex v = φ1,n(i) and leave
another fixed distinguished vertex w = φ1,n(j) unmatched and can at most be extended by an edge
containing w. By thoroughly distinguishing cases for the edges of the middle triangle, we obtain
the general recurrence equation

Mij,n+1 = Mi0,nMj0,n(M00,n +M01,n) +Mi2,n(Mj0,n +Mj1,n)(M02,n +M12,n)

+ (Mi0,n +Mi1,n)Mj2,n(M02,n +M12,n) +Mi1,nMj0,n(M00,n +M01,n)

+Mi0,nMj1,n(M00,n +M01,n) +Mi0,nMj0,n(M01,n +M11,n)

+Mi2,nMj2,n(M00,n + 2M01,n +M11,n).

together with the observation that, clearly, Mij,n = Mji,n. The initial values are given by M00,0 =
M01,0 = M02,0 = M22,0 = 1 and M11,0 = M12,0 = 0. The total number of maximal matchings is
given by (M00,n + 2M01,n +M11,n). Now, if we regard the recursion for the Mij,n as a map in the
projective space P5 of dimension 5, it is easy to check that every point of the algebraic surface

(3)
{
(x00, x01, x02, x11, x12, x22) = (a2, ab, ac, b2, bc, c2)

}
is a super-attractive fixed point of the dynamical system which is applied to the Mij,n. In our case,
the Mij,n tend (in projective space) to the following vector, which can be computed numerically:

(x00, x01, x02, x11, x12, x22) = (0.390764, 0.162426, 0.292467, 0.0675145, 0.121568, 0.218897).

These values are chosen in such a way that the vector is also a fixed point of the system in R6.
Now, by the observations of Section 4, in particular Proposition 2, we know that

(M00,n,M01,n,M02,n,M11,n,M12,n,M22,n)

∼ (0.390764, 0.162426, 0.292467, 0.0675145, 0.121568, 0.218897) · β3n

for some constant β, whose numerical value is β = 3.3200219636 . . . (we skip the calculational
details). So, the total number of maximal matchings in the graph X1,n we are considering is
asymptotically 1.1682830147 · (1.3055968738)E , where E denotes the number of edges again. The
first values are 3, 29, 38375, 92180751403625, . . . The parameterization (3) shows us that

M01,n

M00,n
∼ M11,n

M01,n
∼ M12,n

M02,n

and
M02,n

M00,n
∼ M12,n

M01,n
∼ M22,n

M02,n
,

so pairs of distinguished vertices are at least “asymptotically independent” of each other in this
case. Roughly speaking, as the distance grows, the vertices do not interfere any more.

Finally, we observe that the graphs we studied within this section cannot have perfect match-
ings, since the number of vertices of X1,n is 3n+1, an odd number. However, the following remark-
able fact holds:
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Theorem 3. For every vertex v in the level-n graph X1,n of our construction, there is exactly one
perfect matching in the graph X1,n \ v.

Proof. By induction on n. For n = 0, the theorem is essentially trivial. For the induction step,
let, for the sake of brevity, P1, P2 and P3 denote the parts which are joined by the center triangle,
and let w1, w2, w3 be the corresponding vertices of the center triangle. Without loss of generality,
suppose that v belongs to P3. Since P1 contains an odd number of vertices, not all of the vertices
of P1 can be matched within P1. The only vertex of P1 which has neighbors outside P1 is w1, so
w1 is matched to either w2 or w3. Since the same holds true for w2, w1 and w2 must be matched to
each other. Now, the graph decomposes into the three parts, each reduced by exactly one vertex.
By the induction hypothesis, we are done. �

Corollary 4. The level-n graph X1,n of our construction has exactly 3n+1 maximum matchings
(i.e. matchings of largest possible size), which equals the number of vertices.

5.2. Independent subsets in tree-like graphs.

Theorem 5. Let p, q ≥ 2 be fixed integers, and define X1,n as in Example 1 of Section 2. Denote
by an the number of independent vertex subsets of X1,n. Then we have

an ∼ cp,qα
qn

p,q

for some constants αp,q and cp,q. αp,q can be estimated in the following way:(
2pq2−q + 2(pq − pq−1 + 1)q

)q−2

≤ αp,q ≤
(
pq2−q + (pq − pq−1 + 1)q

)q−2

.

Furthermore, αp,2 = 1
2 (−1 + p+

√
5− 2p+ p2) and αp,q has a Laurent expansion around p = ∞,

whose first terms are

αp,q = p− 1
q − 1

+
2− q

2(q − 1)2
· p−1 + · · ·

for q > 2.

Proof. We distinguish three cases for the number of independent vertex subsets, depending on the
vertices φ1,n(i) (i = 1, 2):

• the number of independent vertex subsets containing none of these two vertices,
• the number of independent vertex subsets containing only φ1,n(1) (by symmetry, this is

the same as the number of independent vertex subsets containing only φ1,n(2)),
• the number of independent vertex subsets containing both of them.

We denote the first number by a0,n, the second by a1,n, and the third by a2,n. Then, by dis-
tinguishing whether the center belongs to the independent subset or not, we obtain the following
system of recurrence equations:

a0,n+1 = a2
0,n(a0,n + a1,n)q−2 + a2

1,n(a1,n + a2,n)q−2,

a1,n+1 = a0,na1,n(a0,n + a1,n)q−2 + a1,na2,n(a1,n + a2,n)q−2,

a2,n+1 = a2
1,n(a0,n + a1,n)q−2 + a2

2,n(a1,n + a2,n)q−2.

We are interested in the total quantity

an = a0,n + 2a1,n + a2,n,

which, by the recurrence equations given above, satisfies

an+1 = (a0,n + a1,n)q + (a1,n + a2,n)q.

Taking xn = log an, we obtain the recurrence

xn+1 = qxn + log
((

a0,n + a1,n

an

)q

+
(
a1,n + a2,n

an

)q)
.

Denote by dn the second summand, which can be estimated easily by using the fact that
a0,n + a1,n

an
+
a1,n + a2,n

an
= 1



ENUMERATION PROBLEMS 11

and x 7→ xq is a convex function: we have 0 ≥ dn ≥ log 21−q = (1 − q) log 2. Therefore, dn is
bounded. Now, the solution of

xn+1 = qxn + dn

is given by

xn = qn

(
x0 +

d0

q
+
d1

q2
+ · · ·+ dn−1

qn

)
.

Since dn is bounded, the sum
∞∑

k=0

dk

qk+1

converges, so xn can be written as

xn = qn

(
x0 +

∞∑
k=0

dk

qk+1
+R(n)

)
,

and R(n) satisfies 0 ≤ R(n) ≤ q−n log 2, which means that an = C(n)αqn

p,q, where 1 ≤ C(n) ≤ 2
and αp,q is given by

αp,q = exp
(
x0 +

∞∑
k=0

dk

qk+1

)
.

By calculating the first values of a0,n, a1,n and a2,n explicitly (the starting values are a0,0 =
p − 1, a1,0 = 1, a2,0 = 0), we obtain an estimate for αp,q – breaking up with d1 gives the stated
result. Furthermore, we see that

αp,q = lim
n→∞

aq−n

n

is uniformly convergent in p (since the error term can be bounded independently of p as above).
Therefore, we can also obtain the Laurent expansion of αp,q at p = ∞ by calculating the expansions
of aq−n

n (it is easy to see that the coefficients in the Laurent series of an must satisfy some linear
recurrence equations) and passing to the limit. We obtain

αp,q = p− 1
q − 1

+
2− q

2(q − 1)2p
+O(p−2)

for q > 2. In the simple case of q = 2, the expansion is

p− 1 + p−1 + p−2 − 2p−4 − 3p−5 + p−6 + 11p−7 + 15p−8 − 13p−9 − 77p−10 − 86p−11 + · · ·

which belongs to the function

αp,2 =
1
2

(
−1 + p+

√
5− 2p+ p2

)
.

In this special case, the corresponding graphs are chains of Kp’s, and everything can be reduced
to linear recurrence equations. It is not easy to tell whether αp,q can be expressed by elementary
functions in general. For q = 3, for instance, we obtain

p− 1
2
− 1

8
p−1 +

7
16
p−2 +

91
128

p−3 +
827
768

p−4 +
2657
3072

p−5 − 3547
6144

p−6 − 138861
32768

p−7 + · · ·

Last, we prove that C(n) tends to a limit. We note first that the quantities

un =
a0,n

a1,n
and vn =

a2,n

a1,n

are bounded: trivially, a1,n ≤ a0,n. Moreover, for each independent subset that doesn’t contain
φ1,n(1), we obtain an independent subset containing φ1,n(1) by removing the neighbors of φ1,n(1)
(there is at most one of them within an independent set since they are pairwise adjacent) and adding
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φ1,n(1). This shows that a0,n ≤ pa1,n (as an a-priori estimate). Analogously, a2,n ≤ a1,n ≤ pa2,n

holds as well. Then we observe that

|un+1vn+1 − 1| =
∣∣∣∣ (1 + un)q−2(1 + vn)q−2(unvn − 1)2

(un(1 + un)q−2 + vn(1 + vn)q−2)2

∣∣∣∣
≤
∣∣∣∣ (1 + un)q−2(1 + vn)q−2(unvn − 1)2

u2
n(1 + un)2(q−2)

∣∣∣∣
=
(

1 + vn

1 + un

)q−2 (unvn − 1)2

u2
n

≤ |unvn − 1| ·
∣∣∣∣unvn − 1

u2
n

∣∣∣∣
We note that 1

p − 1 ≤ unvn − 1 ≤ u2
n − 1 and 1 ≤ un ≤ p by our a-priori-estimates. Therefore,∣∣∣∣unvn − 1

u2
n

∣∣∣∣ ≤ 1− 1
p2

for all n, which shows that unvn tends to 1 as n→∞.

This means that the dynamical systema0

a1

a2

 7→

 a2
0(a0 + a1)q−2 + a2

1(a1 + a2)q−2

a0a1(a0 + a1)q−2 + a1a2(a1 + a2)q−2

a2
1(a0 + a1)q−2 + a2

2(a1 + a2)q−2

 ,

regarded as a map in projective space, has a set of (super-attractive, which is easy to verify) fixed
points given by the algebraic curve {(z, 1, 1

z ) : z ∈ C}, and the vector (a0,n, a1,n, a2,n) has to tend
to a fixed point from this set. The parameterization of the curve shows that the percentage of
independent subsets which contain one of the distinguished vertices is asymptotically independent
of the other.

Now, we conclude that dn tends to a limit d, which, in turn, means that

qnR(n) = −qn
∞∑

k=n

dk

qk+1

tends to − d
q−1 . This gives us the constant term in the asymptotics of an. �

5.3. Antichains in trees with finitely many cone types. In this section, we will regard a
rooted tree of the type described in Example 3 of Section 2 as a partially ordered set and count
the number of antichains in a tree of this type. In particular, we will prove the following theorem:

Theorem 6. Let A = (aij) be an m×m matrix with non-negative integer entries, and define Xk,n

as in Example 3 of Section 2. Let ck,n be the number of antichains in Xk,n. Then we have

(4) ck,n ∼ exp

(
S∑

s=1

λn
sPs,k(n) +Qk(n) log n+Rk(n)

)
.

Here, the λs denote the eigenvalues of A of absolute value not less than 1 (except 1), and Ps,k, Qk

and Rk are computable polynomials. Moreover, Qk is identically 0 unless λ = 1 is an eigenvalue
of A.

Proof. It is easy to see that

(5) ck,n+1 =
s(k)∏
j=1

(1 + cτk(j),n) =
m∏

i=1

(1 + ci,n)aki ,

since an antichain in Xk,n induces antichains (or empty sets) in the parts of Xk,n. If we substitute
xk,n = log ck,n, we obtain

xk,n+1 =
m∑

i=1

akixi,n +
m∑

i=1

aki log(1 + c−1
i,n).
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Now we need an a-priori estimate for ck,n. We prove that ck,n is either a non-constant
polynomial in n for n > n0 or grows at least exponentially. The former is only the case when
the cones belonging to the vertices of Xk,n are – with only finitely many exceptions – linear chains.
We show this by considering the number of leaves of Xk,n. This number is given by a linear
recursion (depending on A) and is non-decreasing. Thus it is either bounded (which means that
almost all cones are linear chains) or grows at least linearly. Note that any collection of leaves
forms an antichain, and that the number of antichains in a linear chain of length n is exactly n.
Together with (5), this implies that ck,n is a polynomial in n for all n > n0 if it does not grow at
least exponentially.

We write xn for the column vector (x1,n, . . . , xm,n)t and dn = (d1,n, . . . , dm,n)t, where dk,n =
log(1 + c−1

k,n). Then the recursion transforms to

xn+1 = Axn +Adn

or
xn = Anx0 +And0 +An−1d1 + · · ·+Adn−1.

Now, let S−1TS be the Jordan decomposition of A. Then this can be rewritten as

xn = S−1(TnSx0 + TnSd0 + Tn−1Sd1 + · · ·+ TSdn−1).

For the inner sum, we may suppose that T is a single Jordan block. The total vector is then
obtained from joining the vectors belonging to the single Jordan blocks. Let λ be the eigenvalue
the Jordan block T belongs to and t the size of the block. We distinguish the following three cases:

(1) |λ| < 1: Then, since Aj = O(λjjt−1) and dj = O(j−1), we have

TnSx0 + TnSd0 + · · ·+ TSdn−1 = O
(

1
n

)
.

(2) |λ| > 1: T is an invertible matrix, so we can write

TnSx0 + TnSd0 + · · ·+ TSdn−1 = Tn

(
Sx0 +

n−1∑
j=0

T−jSdj

)

= Tn

(
Sx0 +

∞∑
j=0

T−jSdj −
∞∑

j=n

T−jSdj

)
.

The infinite sums are convergent, since T−j = O(λ−jjt−1). For j > n0, we know that
all dk,j are either of the form log

(
1 + p(j)−1

)
for some polynomial p or exponentially

decreasing in terms of j. By using the expansion around ∞, we obtain

Sdj = (p1(j−1), . . . , pt(j−1))t +O(j−t),

where the pi are polynomials of degree ≤ t−1 with constant coefficient 0. It is well known
that

∞∑
j=n

λ−jj` = λ−n

(s−1∑
ν=0

(
`

ν

)
Li−ν(λ−1)n`−ν +O(n`−s)

)
,

where Liσ(z) =
∑∞

j=0 j
−σzj is a polylogarithm, see [23]. Therefore, the sum

∑∞
j=n T

−jSdj

can be written in the form

T−n ·
(
(r1(n), . . . , rt(n))t +O(n−1)

)
,

where the ri are polynomials of degree ≤ t− 1. Altogether, this implies that

Tn
∞∑

j=n

T−jSdj = R(n) +O(n−1),

where R is a vector of polynomials of degree ≤ t− 1.
(3) |λ| = 1: this case is almost analogous to |λ| > 1. Again, we expand dj around ∞; then,

consider the sums
n−1∑
j=1

λ−jj`.
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For ` ≤ −t, these sums are convergent with an error term of
∑∞

j=n λ
−jj` = O(n−t). For

all other `, these sums can be written as
n−1∑
j=1

λ−jj` = C` + λ−nL(n) +O(n−r),

where r can be made arbitrary and L(n) is an expansion around n = ∞. This yields terms
of the form

Tn
n∑

j=0

T−jSdj = λnP(n) + R(n) +O(n−1)

for some polynomials P,Q of degree ≤ t−1. The only exception is λ = 1 – here, logarithmic
terms may appear in view of

∑n
j=1 j

−1 ∼ log n.

Altogether, we obtain a formula of the type (4), which finishes the proof. �

Remark. Note that the same way of reasoning can be used for maximal antichains, whose recursion
is given by

ck,n+1 = 1 +
s(k)∏
j=1

cτk(j),n = 1 +
m∏

i=1

caki
i,n ,

which transforms into the recursion for antichains after performing the simple substitution ck,n =
1 + c̃k,n.

Remark. The number of antichains is also the number of subtrees containing the root – the leaves
of such a subtree always define an antichain and vice versa.

We give two particularly nice examples for our theorem:

Example 1. Consider the complete binary tree belonging to the 1 × 1-matrix with a single entry
of 2. Then the number cn of antichains is given by c0 = 1 and cn+1 = (cn + 1)2. The solution of
this recursion has already been given by Aho and Sloane [1]; this was also noted by Székely and
Wang [37] who considered the number of subtrees in a complete binary tree. In fact, we have

cn =
⌊
α2n⌋

− 1,

where

α = exp
( ∞∑

i=0

2−i log(1 + c−1
i )
)

= 2.258518 . . .

The sequence (cn) = (1, 4, 25, 676, 458329, . . . ) is number A004019 in Sloane’s “On-Line Encyclo-
pedia of Integer Sequences” [36].

Example 2. Let A =
(

1 1
0 1

)
. Then we obtain a comb-like tree. The corresponding recursion is given

by c0 = 1 and
cn = (n+ 1)(cn−1 + 1).

This sequence is known for more than 300 years, counting the number of permutations of nonempty
subsets of {0, 1, . . . , n}. The solution of the recursion is seen to be be(n+1)!c−1 (Sloane’s A007526
[36]; the first terms of the sequence are 1, 4, 15, 64, 325, 1956, 13699, . . . ).

5.4. Connected subsets in a Sierpiński graph. The construction of Sierpiński graphs was
described in Example 4 of Section 2. We will consider the case d = 2 only and calculate the number
of connected subsets in the level-n Sierpiński graph. A vertex subset of a graph is connected, if it
induces a connected subgraph.

This example shows us that it may be necessary to consider several auxiliary properties as
well. In fact, we need seven different sequences: we consider sets of vertices with the property that
every connected component of the induced subgraphs contains at least one of the corner vertices.
Our auxiliary sequences are distinguished by the number of corner vertices contained in the subsets
and the partition of these corner vertices induced by the connected components.
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• a1,n counts the number of subsets with three connected components, each of which contains
one corner vertex.

• a2,n counts the number of subsets with two connected components, one of them containing
two corner vertices, the other component one,

• a3,n counts the number of subsets with two connected components, each of which contains
one corner vertex.

• a4,n counts the number of connected subsets containing all corner vertices,
• a5,n counts the number of connected subsets containing two corner vertices.
• a6,n counts the number of connected subsets containing one corner vertex.
• Eventually, a7,n counts the number of connected subsets containing no corner vertex (ex-

cluding the empty set).

It takes some time and patience to work through all possibilities and thus determine the correct
recurrence equations, but this task can be simplified by means of a computer. As an example, we
derive the equation for a4,n+1. Let the three vertices which connect the parts of a Sierpiński graph
be called the links. At least two of them have to belong to a connected set containing all corner
vertices – otherwise, it is impossible to connect the corners.

• If all links are contained in a connected subset, either all the induced subsets in all three
parts are connected or two of them are connected and one of them has two connected
components, each containing one of the links. The corner can be contained in either of
these components. This yields a summand of a3

4,n + 6a2,na
2
4,n.

• Suppose that only two of the links are contained in a connected subset. Then the induced
subsets in all the parts have to be connected, which leads to a summand of 3a4,na

2
5,n.

So we arrive at the recursive relation

a4,n+1 = a3
4,n + 6a2,na

2
4,n + 3a4,na

2
5,n.

In a similar way, recurrence equations can be determined in all other cases as well by accurately
distinguishing cases. This leads us to the following system (note that the polynomials on the right
are not homogeneous; however, we could achieve this by introducing the trivial sequence which
counts the empty set only):

a1,n+1 = 12a1,na2,na4,n + 3a1,na
2
5,n + 14a3

2,n + 12a2,na3,na5,n

+ 3a2
2,na4,n + 3a2

3,na4,n + 6a3,na5,na6,n + a3
6,n,

a2,n+1 = a1,na
2
4,n + 7a2

2,na4,n + a2,na
2
4,n + 3a2,na

2
5,n + 2a3,na4,na5,n + a2

5,na6,n,

a3,n+1 = 2a1,na4,na5,n + 4a2,na3,na4,n + 2a2,na4,na5,n + 6a2
2,na5,n + 4a2,na5,na6,n

+ 2a3,na4,na6,n + 3a3,na
2
5,n + 2a3,na5,n + 2a5,na

2
6,n + a2

6,n,

a4,n+1 = 6a2,na
2
4,n + a3

4,n + 3a4,na
2
5,n,

a5,n+1 = 4a2,na4,na5,n + a3,na
2
4,n + a2

4,na5,n + 2a4,na5,na6,n + a3
5,n + a2

5,n,

a6,n+1 = 2a2,na
2
5,n + 2a3,na4,na5,n + a4,na

2
5,n + a4,na

2
6,n

+ 2a2
5,na6,n + 2a5,na6,n + a6,n,

a7,n+1 = 3a3,na
2
5,n + a3

5,n + 3a5,na
2
6,n + 3a2

6,n + 3a7,n.

(6)

The initial values are (a1,0, a2,0, a3,0, a4,0, a5,0, a6,0, a7,0) = (0, 0, 0, 1, 1, 1, 0), and the total
number of connected subsets (including the empty set) at level n is given by a4,n +3a5,n +3a6,n +
a7,n + 1.
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Asymptotically, the terms of total degree three in our system of recurrences are much larger
than the others, so we have to study the dynamical system generated by these terms:

a1

a2

a3

a4

a5

a6

a7


7→



12a1a2a4 + 3a1a
2
5 + 14a3

2 + 12a2a3a5 + 3a2
2a4 + 3a2

3a4 + 6a3a5a6 + a3
6

a1a
2
4 + 7a2

2a4 + a2a
2
4 + 3a2a

2
5 + 2a3a4a5 + a2

5a6

2a1a4a5 + 4a2a3a4 + 2a2a4a5 + 6a2
2a5 + 4a2a5a6 + 2a3a4a6 + 3a3a

2
5 + 2a5a

2
6

6a2a
2
4 + a3

4 + 3a4a
2
5

4a2a4a5 + a3a
2
4 + a2

4a5 + 2a4a5a6 + a3
5

2a2a
2
5 + 2a3a4a5 + a4a

2
5 + a4a

2
6 + 2a2

5a6

3a3a
2
5 + a3

5 + 3a5a
2
6


Unfortunately, it has no positive fixed points in projective space. So we have to apply a little

trick: set γ = 5
3 and

ai,n =


γ3n/2Ai,n for i = 1,
γn/2Ai,n for i = 2, 3,
γ−n/2Ai,n for i = 4, 5, 6, 7.

In addition, we denote by An the vector (A1,n, . . . , A7,n). Then, our recurrence equations transform
to

An+1 = P(An) + γ−nQ1(An) + γ−2nQ2(An) + γ−3nQ3(An) + R(An),
where P, Q1, Q2, and Q3 are homogeneous polynomials of degree three and R contains the
remaining terms of lower degree. The polynomial P is given by

P :



A1

A2

A3

A4

A5

A6

A7


7→



γ−3/2(14A3
2 + 12A1A2A4)

γ−1/2(7A2
2A4 +A1A

2
4)

γ−1/2(4A2A3A4 + 6A2
2A5 + 2A1A4A5)

γ1/2(6A2A
2
4)

γ1/2(A3A
2
4 + 4A2A4A5)

γ1/2(2A2A
2
5 + 2A3A4A5)

γ1/2(3A3A
2
5)


.

When we study the dynamical system generated by P we observe that the algebraic surface defined
by {

(A1, A2, A3, A4, A5, A6, A7) =
(

1
10µ3

,
1

2
√

15µ
,

λ√
15µ

, µ, λµ, λ2µ, λ3µ

)}
is the set of attractive fixed points. Indeed, one can check that, as a vector in projective space,
An tends to a fixed point C, whose numerical value is

(0.573118, 0.291082, 0.817477, 0.443515, 0.622786, 0.874517, 1.228000).

A rigorous proof of this fact would involve the following steps:

• Check that An lies within a suitable neighborhood of the fixed point for a sufficiently large
value of n,

• prove inductively that it will stay within these boundaries for all larger n (since the fixed
point is attractive, the first term is a contraction within a suitable neighborhood; the
remaining terms are easily estimated since they are very small for sufficiently large n).

Again, we notice an “independency phenomenon” for the corners of the triangle.

So, finally, we obtain the asymptotics An ∼ C · β3n

, where the numerical value of β is
2.3032106556. Altogether, we find the asymptotic number of connected subsets in the level n-
Sierpiński graph to be

6.163424 · γ−n
2 · β3n

∼ 2.940541 · V
1
2 (1− log 5

log 3 ) · β 2V
3 .

Here V = 3
2 (3n + 1) denotes the number of vertices in this formula. The numerical value of β2/3

is 1.7440373203 . . . The first terms of the sequence are

8, 48, 6307, 16719440488, 484190291407629184897238968931, . . .
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Remark. We observe that there are more sets of the “half-connected” (two connected components)
or “one-third-connected” (three connected components) type – by an exponential factor – than
connected sets. Furthermore, when we take a closer look at the recurrence relations, we see that
the summands which contribute most always correspond to the case that all three “links” are
contained in the set. This means that almost all (in some sense) connected subsets contain all
three links.

Remark. The Sierpiński triangle is easily generalized by varying the number of subdivisions per
triangle side (and thus varying the number of subtriangles) or generalizing the construction to
higher dimensions. By computer experiments, we observed that similar results hold for these
generalizations, where the constant γ = 5

3 is replaced by other rational numbers. For the 3- and 4-
dimensional analogues, the constants are 3

2 and 7
5 respectively, leading us to the conjectured formula

d+3
d+1 , where d is the dimension. On the other hand, by increasing the number of subdivisions, we
obtain the sequence

5
3
,
15
7
,
103
41

,
1663
591

,
21559
7025

, . . .

which is rather difficult to explain. We did not find any hints on its origin in Sloane’s encyclopedia
[36]. It is a remarkable fact, however, that all these constants are indeed rational numbers, since
they are given by rather complicated algebraic systems of equations only. It seems to be a highly
challenging problem to find a proof for this.

Surprisingly, these rational numbers exactly match the resistance scaling factors of the gener-
alized Sierpiński gaskets, see [3] for a definition of this constant: Consider the level-n graph X1,n

as electrical network with constant resistant on its edges and denote by En the associated energy
form. Then there is a restriction of En+1 to X1,n, which is called the trace of En+1. It turns out
that En and the trace of En+1 are the same up to a constant, which is called the resistance scaling
factor.

Figure 6. The Pentagasket: A pentagonal analogue of the Sierpiński gasket.

Interestingly, when we consider the pentagonal analogue of the Sierpiński gasket, see Figure 6,
the basis of the exponential factor is not rational any more; however, it still equals the resistance
scaling factor, which is 1

10 (9 +
√

161) in this case, see for example [12].
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