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Abstract. Bárány and Tokushige solved the problem of characterizing the
asymptotic behavior of the minimum area a(n) of a convex lattice n-gon: they

showed that the limit of a(n)/n3 exists and that it is most probably close to
0.0185067 . . .. In this note, a short and elementary proof is given for the fact
that a(n) ≥ n3(1/72+ o(1)), which is a weaker result than that of Bárány and
Tokushige, but improves on previous elementary proofs due to Rabinowitz and

Cai.

1. Introduction

The minimal area of an arbitrary lattice polygon with n vertices is easily de-
termined (using Picks Theorem) as (n − 2)/2; however, for convex lattice n-gons,
the area is bounded below by cn3 with some universal constant c. For this fact,
different proofs have been given by G.E. Andrews [1], V.I. Arnol’d [2], W. Schmidt
[10], Bárány/Pach [3] and T.-X. Cai [6].

In the following, a(n) denotes the minimum area of a convex lattice n-gon.
Simpson [11] provides a nice geometric proof of the following characterization:

Lemma 1 (Simpson 1990).

a(2n) = min
n
∑

i=1

n
∑

j=i+1

(yixj − xiyj),

where the minimum is taken over all sequences (xi, yi)1≤i≤n of ordered pairs satis-

fying the following four conditions:

• yixj − xiyj > 0 for all 1 ≤ i < j ≤ n,

• gcd(xi, yi) = 1 for all 1 ≤ i ≤ n,

• (x1, y1) = (0, 1),
• yi ≥ xi > 0 for all 2 ≤ i ≤ n.

In the following, we will call a sequence that satisfies Simpson’s conditions ad-

missible. Furthermore, Simpson shows that
⌊

a(2n + 2) + a(2n)

2

⌋

+
1

2
≤ a(2n + 1) ≤ a(2n + 2) − 1

2
.

Thus it is sufficient to investigate the case of even n. The first few values of a(n)
are given in the following table (see [11]):

n 3 4 5 6 7 8 9 10 12 14 16 18
a(n) 0.5 1 2.5 3 6.5 7 10.5 14 24 40 59 87

As Bárány and Tokushige [4] point out, the problem is equivalent to finding
an 0-symmetric body of minimum area that contains n primitive vectors (i.e., the
coordinates are coprime). Therefore, an upper bound for a(n) can easily be given
using a circle of appropriate radius in this equivalent problem, yielding the bound
n3(1+o(1))/54 (see [4]). They also show that the constant 1

54 is pretty close to the

true value of limn→∞
a(n)
n3 (which they prove to exist): they are able to reduce the
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problem to finitely many optimization problems, and their calculations suggest that
the correct value is approximately 0.0185067 . . . (compare to 1

54 = 0.0185185 . . .),
thus solving the problem almost completely.

Up to that point, the best known lower bound n3/(8π2) had been given by S.
Rabinowitz [9]; T.-X. Cai [5, 6] uses Simpson’s characterization to give an elemen-

tary proof of the inequality a(n) ≥ n3

1152 + O(n2). Before that, estimates have also
been provided by Rabinowitz [8] and Colbourn and Simpson [7].

The result that is proved in this paper is the following:

Theorem 1.

a(n) ≥ n3

72
+ O(n5/2).

Of course, this result is much weaker than that of Bárány and Tokushige, but
the proof is short and elementary, and so is appears to be interesting on its own
right.

2. Proof of the main theorem

Let (xi, yi)1≤i≤n be any admissible sequence. Choose a k ≥ 2 such that yk is
maximal. Then (xi, yi)1≤i≤n

i6=k

is (trivially) admissible again. So we have

n
∑

i=1

n
∑

j=i+1

(yixj − xiyj) =

n
∑

i=1
i6=k

n
∑

j=i+1
j 6=k

(yixj − xiyj) +

n
∑

i=1

(yixk − xiyk)

≥ a(2n − 2) +
n
∑

i=1

|yixk − xiyk|

and by taking the minimum

a(2n) ≥ a(2n − 2) +

n
∑

i=1

|yixk − xiyk|.

Now consider the last sum: by the first admissibility condition, none of the sum-
mands can be 0. We show that there is at most one index i with yixk − xiyk = c
for any other c ∈ Z:

If yixk − xiyk = c, then we must have yixk ≡ c mod yk. As xk and yk are
coprime, the solution of zxk ≡ c mod yk is unique modulo yk. As 0 < yi ≤ yk by
the maximality of yk, yi is uniquely determined by yixk−xiyk = c (and so is xi from
xi = yixk−c

yk
). Thus there can be at most one i for which we have yixk − xiyk = c.

So |yixk − xiyk| = b for at most two indices i for any b ∈ N.
Now let b = 2d ∈ N be even. We claim that |yixk − xiyk| = b for at most one i

(not two), if yk ∤ d.
To prove this, let z1 und z2 be the solutions of zxk ≡ d mod yk and zxk ≡ −d

mod yk, respectively, such that 1 ≤ z1, z2 ≤ yk holds. As yk ∤ d, z1 and z2 are not
equal yk. Clearly z1 ≡ −z2 mod yk and thus z1 + z2 = yk. So either z1 ≤ yk/2 or
z2 ≤ yk/2. Assume that the former holds. Then 2z1 is a solution of the equation
zxk ≡ 2d mod yk. Choose u1 in such a way that z1xk − u1yk = d. Then the pair
(2z1, 2u1) satisfies 2z1xk − 2u1yk = 2d = b and 2z1 ≤ yk. But this cannot be a
pair (yi, xi), as 2z1 und 2u1 are not coprime. So one of the possible solutions of
|yixk − xiyk| = b cannot be attained by a pair (yi, xi), which proves the claim (the
second case is proved analogously).

Thus we immediately obtain an estimate for the sum
∑n

i=1 |yixk −xiyk|: it may
contain every odd number at most twice and every even number that is not divisible
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by 2yk at most once. Consequently, we get
n
∑

i=1

|yixk − xiyk| ≥ 1 + 1 + 2 + 3 + 3 + . . . +

⌊

2R − 1

3

⌋

+ 2yk + 4yk + . . . + 2Syk,

where R and S are taken in such a way that the number R − 1 + S of summands
equals n − 1 and that 2Syk ≤ ⌊ 2R−1

3 ⌋.
As all pairs (xi, yi) must be different with xi ≤ yi, there are at most two pairs

with yi = 1, three pairs with yi = 2, and so on. Therefore we have
∑yk

j=1(j + 1) =

yk(yk + 3)/2 ≥ n and it follows that yk ≥
√

2n + 9/4 − 3/2. Now we have the
following estimate for R and S:

2Syk ≤
⌊

2R − 1

3

⌋

≤ 2R

3
or S ≤ R

3yk
.

From R + S = n we can conclude now that n ≤ R
(

1 + 1
3yk

)

and thus

R ≥ n

(

1 − 1

3yk + 1

)

≥ n

(

1 − 1

3
√

2n + 9/4 − 7/2

)

= n + O(
√

n).

The sum

1 + 1 + 2 + 3 + 3 + 4 + . . . +

⌊

2R − 1

3

⌋

is evaluated easily:

R
∑

l=2

⌊

2l − 1

3

⌋

=

⌊

R2 − R + 1

3

⌋

=











3r2 − r R = 3r

3r2 + r R = 3r + 1

3r2 + 3r + 1 R = 3r + 2

,

and 2yk

∑S
l=1 l = ykS(S + 1) = O(RS). Thus

a(2n) − a(2n − 2) ≥
⌊

R2 − R + 1

3

⌋

+ O(RS) =
R2

3
+ O(RS) =

n2

3
+ O(n

√
n).

By summing over all n, we obtain

a(2n) ≥
n
∑

m=1

(

m2

3
+ O(m

√
m)

)

=
n3

9
+ O(n5/2).

It immediately follows that a(n) ≥ n3

72 + O(n5/2) for even n. But by the fact that
⌊

a(2n+2)+a(2n)
2

⌋

+ 1
2 ≤ a(2n + 1) ≤ a(2n + 2) − 1

2 , this remains true for odd n. �

Remark. Explicit computation of the estimates above yields sharp results for small
values of n, specifically for n = 4, 6, 8, 10, 12.

Remark. The argument for even values of b can be heuristically extended: for
instance, consider solutions of zxk ≡ ±d mod yk satisfying z1 ≤ yk/3 or z2 ≤ yk/3
(if yk is small compared to n, about two thirds of all values for d satisfy the
condition; if yk is big compared to n, the ratio might be smaller, possibly only
one half). These would give solutions of zxk ≡ ±3d mod yk with z ≤ yk by simply
multiplying by 3. Solutions of that kind cannot be admitted by any pair (xi, yi).
The same reasoning works for all primes instead of 3.

However, it is not evident at all how to combine the arguments for different
primes in an effective way.
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