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Abstract

We consider self-similar graphs following a specific construction scheme: in each

step, several copies of the level-n graph Xn are amalgamated to form Xn+1. Exam-

ples include finite Sierpiński graphs or Viček graphs. For the former, the problem

of counting perfect matchings has recently been considered in a physical context

by Chang and Chen, and we aim to find more general results. If the number of
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amalgamation vertices is small or if other conditions are satisfied, it is possible to

determine explicit counting formulæ for this problem, while generally it is not even

easy to obtain asymptotic information. We also consider the statistics “number of

matching edges pointing in a given direction” for Sierpiński graphs and show that it

asymptotically follows a normal distribution. This is also shown in more generality

in the case that only two vertices of Xn are used for amalgamation in each step.

Key words: Perfect matchings, self-similar graphs, exact enumeration, asymptotics

1 Introduction1

The enumeration of perfect matchings belongs to the classical counting prob-2

lems in graph theory. In view of its applications to the dimer problem in3

statistical physics, the enumeration of perfect matchings is particularly well-4

studied for square and hexagonal lattices—this line of investigation has been5

started by Kasteleyn’s fundamental work (see [5]), and there is a vast variety of6

subsequent papers on the enumeration of perfect matchings and the equivalent7

problem of counting domino and lozenge tilings; [7] provides a good survey of8

this topic. Some other papers deal with perfect matchings in trees, cacti and9

other families of graphs, see for instance [3,6].10

For basically the same class of graphs, it was shown in [9] that remarkable11

explicit formulæ can be given for the problem of counting spanning trees. It12

turns out that there are explicit formulæ for the number of perfect matchings13
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in some special cases as well, and these cases will thus be of particular interest14

in this paper. Section 4 deals with these special cases.15

We will also consider the statistics “number of edges in a fixed direction” for16

random perfect matchings, which is particularly natural in the aforementioned17

special case of the Sierpiński gasket. A normal limit law for this quantity with18

explicit mean and variance will be proved in Section 5.19

2 Construction20

In order to define the graph sequences we are going to investigate, the following21

essential ingredients are needed (cf. the construction in [8,9]):22

• An edgeless graph G with θ ≥ 2 distinguished vertices given by η : Θ → VG23

(Θ = {1, . . . , θ}).24

• s ≥ 2 substitutions, defined by injective maps σi : Θ → VG for i ∈ S =25

{1, . . . , s} such that VG =
⋃s
i=1 σi(Θ).26

Now, for any (multi-)graph X and any injective map ϕ : Θ → VX , a new27

multigraph Y together with an injective map ψ : Θ → VY is constructed as28

follows:29

For each i ∈ S let Zi be an isomorphic copy of the (multi-)graph X, so that30

the vertex sets VZ 1, . . . ,VZ s, and VG are mutually disjoint. The isomorphism31

between X and Zi is denoted by ζi : VX → VZ i. Let Z be the disjoint union of32

G and Z1, . . . , Zs and define the relation ∼ on VZ as the reflexive, symmetric,33
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and transitive hull of34

s⋃
i=0

{
(σi(j), ζi(ϕ(j))) : j ∈ Θ

}
⊆ VZ × VZ .

Then the multigraph Y is defined by its vertex set VY = VZ/∼ and edge35

(multi-)set36

EY =
{
{[v], [w]} : {v, w} ∈ EZ

}
,

where [v] denotes the equivalence class of a vertex v. The map ψ : Θ → VY37

is defined by ψ(i) = [η(i)] ∈ VY . We call ϕ(Θ) (and ψ(Θ)) the distinguished38

vertices (or boundary vertices) of X (and of Y , respectively).39

If the pair (Y, ψ) is constructed as above from (X,ϕ), write (Y, ψ) = Copy(X,ϕ).40

Since we fix G, η, and {σi : i ∈ S}, the dependence on these items is sup-41

pressed. Note that Y is the amalgamation of s isomorphic copies of X (thus42

we need the additional condition that VG =
⋃s
i=1 σi(Θ), which means that43

there are no isolated vertices): for i ∈ S define Z̄i by44

VZ̄i =
{

[v] : v ∈ VZ i

}
and EZ̄i =

{
{[v], [w]} : {v, w} ∈ EZ i

}
.

Then Z̄i is isomorphic to X and the isomorphism is given by45

ζ̄i : VX → VZ̄i, v 7→ [ζi(v)].

The subgraph Z̄i is called the i-th part of Y . On the i-th part of Y distinguished46

vertices are given by47

Θ → VZ̄i, j 7→ ζ̄i(ϕ(j)) = [σi(j)].

In the following, we will be interested in sequences of graphs obtained by48

iterating this construction, i.e. X0 is some initial graph with distinguished49

vertices given by a map ϕ0, and (Xn, ϕn) = Copy(Xn−1, ϕn−1). We will also50
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need some symmetry condition in the following sections: it will be assumed51

that the graphs Xn are strongly symmetric with respect to the boundary52

ϕn(Θ), i.e. the automorphism group of Xn acts like the alternating group53

or the symmetric group on ϕn(Θ). If this condition is satisfied, then we have54

the following simple yet important property:55

Lemma 1. For any two subsets K1, K2 ⊆ Θ with |K1| = |K2| and any non-56

negative integer n, there is an automorphism π of Xn such that π(ϕn(K1)) =57

π(ϕn(K2)).58

2.1 Examples59

In this subsection we present some examples of self-similar graphs illustrating60

the construction. Note that all examples satisfy the symmetry condition.61

σ1

σ2

σ3

σ4

σ5

σ6

1 2 5 6

3 4

G

X0
X1

X2

X3

Fig. 1. An example of a sequence of finite self-similar graphs.
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2.1.1 An example with two distinguished vertices62

Let θ = 2 and s = 6 and define G by VG = {1, 2, 3, 4, 5, 6}. Furthermore,63

define the maps η and σj by the following table:64

i η(i) σ1(i) σ2(i) σ3(i) σ4(i) σ5(i) σ6(i)

1 1 1 2 2 3 4 5

2 6 2 3 5 4 5 6

With these definitions we build a sequence of finite self-similar graphs Xn by65

setting X0 = K2 and (Xn, ϕn) = Copy(Xn−1, ϕn−1) (Figure 1).66

X0 X1 X2 X3

Fig. 2. The first few finite 2-dimensional Sierpiński graphs.

2.1.2 Finite Sierpiński graphs67

Fix some d ∈ N and let s = θ = d+ 1. Define the edgeless graph G by68

VG =
{
x ∈ Nd+1

0 : x1 + x2 + . . .+ xd+1 = 2
}

and the map η : Θ → VG by η(i) = 2ei, where ei is the i-th canonical basis69

vector of Rd+1. In addition, set σi(j) = ei+ej ∈ VG for i ∈ S and j ∈ Θ (note70

that Θ = S = {1, . . . , d + 1}). It is easy to see that |VG | = 1
2
(d + 2)(d + 1).71

The usual finite d-dimensional Sierpiński graphs are then obtained by setting72

X0 = Kd+1 and iterating (Xn, ϕn) = Copy(Xn−1, ϕn−1) for n ∈ N. See Figure 273

for the case d = 2.74
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2.1.3 Finite Viček graphs75

Fix some integer θ ≥ 2 and set s = θ + 1. Recall that Θ = {1, 2, . . . , θ} and76

define VG = Θ ×Θ. Then define the maps η and σi by η(i) = (i, 1) and77

σi(j) =


(i, j) if i ∈ Θ,

(j, 2) if i = s = θ + 1

With this data the finite Viček graphs are defined as follows: the initial graph78

X0 is the complete graphKθ, andXn is defined by (Xn, ϕn) = Copy(Xn−1, ϕn−1),79

as always. Figure 3 shows the first few Viček graphs for θ = 4.

X0 X1 X2

Fig. 3. The first few finite Viček graphs.
80

3 Perfect Matchings81

A matching is a set of disjoint edges of a graph, a perfect matching is a match-82

ing which covers all vertices of a graph. Let a graph X with θ distinguished83

vertices (defined by an injective map ϕ : Θ → VX , as in the previous section)84

be given such that X is strongly symmetric with respect to ϕ(Θ). We denote85

the set of matchings byM(X) and defineMK(X) to be the set of all perfect86

matchings of X \ ϕ(K) for any set K ⊆ Θ. Then, in view of strong symme-87

try, the size of MK(X) only depends on the cardinality of K, and we may88

define mk(X) = |MK(X)| for any set K of cardinality |K| = k. Note that89
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mk(X) = 0 if k 6≡ |VX | mod 2.90

Now, if Y = Copy(X), we want to express the values of mk(Y ) in terms of the91

mj(X). To this end, note that every matchingM inMK(Y ) induces matchings92

on all parts Z̄i of Y . For each i, let Mi be the restriction of M to the i-part93

Z̄i: Mi = M ∩ EZ̄i. The matching Mi has to cover all vertices of Z̄i except94

possibly some of the distinguished vertices of Z̄i. Hence ζ̄−1
i (Mi) belongs to95

MLi
(X) for some set Li. Moreover, for each v ∈ VG \ η(K), there is exactly96

one i = ρ(v) such that the vertex [v] ∈ VY is covered by an edge in the part97

Z̄i.98

Conversely, let a set K be given. Define a map ρ : VG\η(K)→ S such that v ∈99

σρ(v)(Θ) for all v, and choose a perfect matching Mi in X \ϕ(Θ \σ−1
i (ρ−1(i)))100

for each i ∈ S (i.e. in the preimage of Z̄i, reduced by all vertices which are101

not covered within Z̄i), if possible. Then
⋃s
i=1 ζ̄i(Mi) is a matching inMK(Y ).102

So we have established a bijective correspondence between MK(Y ) and all103

possible tuples (ρ,M1, . . . ,Ms). Here, Mi is a matching in MLi
for some set104

Li of cardinality θ − |ρ−1(i)|. Hence, the formula105

mk(Y ) =
∑
ρ

s∏
i=1

mθ−|ρ−1(i)|(X) (1)

holds, where the sum is over all possible functions ρ which satisfy the above106

condition, and K is an arbitrary set of size k. The following simple lemma is107

an immediate consequence:108

Lemma 2. For every 0 ≤ k ≤ θ, there exist nonnegative integer coefficients109

a(k,ν) such that110

mk(Y ) =
∑
ν

a(k,ν)
θ∏
j=0

mj(X)νj ,

where the sum is over all (θ+1)-tuples ν = (ν0, . . . , νθ) of nonnegative integers111
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such that112

θ∑
j=0

νj = s and
θ∑
j=0

jνj = sθ − |VG |+ k.

Proof. We only have to check that in Equation (1), the identity113

s∑
i=1

(θ − |ρ−1(i)|) = sθ − |VG |+ k

holds. Then, the lemma follows easily from (1). However, this is equivalent to114

|dom(ρ)| =
s∑
i=1

|ρ−1(i)| = |VG | − k,

which is obviously true. �115

In the following, some examples for the resulting recurrences are provided and116

analyzed. The special cases θ = 2 and θ = 3 have particularly nice properties117

yielding explicit formulæ, and so we are going to deal with them first.118

Note that the number of vertices in Xn satisfies a first-order linear recurrence,119

namely120

|VX n| = s|VX n−1|+ |VG | − sθ.

Hence there are three possibilities, depending on s and δ = sθ − |VG |:121

• |VX n| is even for all n > 0, so that mk(Xn) can only be positive if k is even.122

This happens if s and δ are both even or if s is odd and δ, |VX 0| are even.123

• |VX n| is odd for all n > 0, so that mk(Xn) can only be positive if k is odd.124

This happens if s is even and δ odd or if s, |VX 0| are odd and δ even.125

• |VX n| is alternately odd and even, and mk(Xn) behaves accordingly. This126

happens if s, δ are both odd.127
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4 The special cases of two or three distinguished vertices128

In the cases θ = 2 and θ = 3 it is possible to derive exact formulæ for the129

quantities mk(Xn), as will be exhibited in this section. Specifically, we have130

the following theorem:131

Theorem 3. Assume that |VX n| is always even or always odd for n > 0 and132

θ = 2 or θ = 3. Then there are constants Ck, γ, τ , and β, so that133

mk(Xn) = Ck γ
(τ−k/2)n βs

n

holds for all n > 0 and all k.134

Now assume that |VX n| is alternately odd and even for n > 0. If θ = 2, then135

mk(Xn) is eventually 0 for all k. If θ = 3, then mk(Xn) is given by the formula136

above for every other n depending on parity.137

The proof of this result is provided in the following two subsections. Note138

that γ > 0 can be arbitrarily close to 0 as well as arbitrarily close to ∞, see139

Example 4.3.3.140

4.1 Two distinguished vertices141

Since we are mostly interested in counting perfect matchings, we deal with142

the case when |VX n| is always even first. Then Lemma 2 shows that there are143

coefficients a, b such that144

m0(Xn) = am0(Xn−1)
νm2(Xn−1)

s−ν ,

m2(Xn) = bm0(Xn−1)
ν−1m2(Xn−1)

s−ν+1,
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where ν = 1
2
|VG |. Note that no symmetry condition at all is necessary to145

obtain this recursive relation. It also follows that a is precisely the number of146

perfect matchings in Copy(K2, ϕ) (ϕ being the trivial map from {1, 2} to the147

vertices of K2) and that b is the number of perfect matchings in Copy(K2, ϕ)\148

ψ({1, 2}). Dividing the two equations yields149

m0(Xn)

m2(Xn)
=
a

b
· m0(Xn−1)

m2(Xn−1)
,

which shows that150

m2(Xn) = Q
(
b
a

)n
m0(Xn),

where Q = m2(X0)
m0(X0)

. We use this in the formula for m0(Xn) to obtain151

m0(Xn) = aQs−ν
(
b
a

)(s−ν)(n−1)
m0(Xn−1)

s

with the explicit solution152

m0(Xn) = C0 γ
τn βs

n

, m2(Xn) = C2 γ
(τ−1)n βs

n

,

where the constants C0,C2,γ,τ , and β are given as follows:153

γ = a
b
, τ = s−ν

s−1
, C0 = (a−1γτ )1/(s−1)Q−τ ,

C2 = C0Q, β = C−1
0 m0(X0).

The case when |VX n| is always odd is less interesting. We already know that154

m0(Xn) = m2(Xn) = 0 for all n > 0. In view of Lemma 2, m1(Xn) = 0 holds155

as well for almost all n unless |VG | = s+ 1 (otherwise, there is no solution to156

ν1 = s and ν1 = 2s − |VG | + 1). Then, however, there exists a constant a so157

that m1(Xn) = am1(Xn−1)
s with the simple solution158

m1(Xn) = a
1

1−s ·
(
m1(X0) a

1
s−1

)sn

.
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Finally, we consider the case when the parity of |VX n| is alternating. In this159

case, the quantities m0(Xn), m1(Xn), and m2(Xn) are equal to 0 for almost all160

n, which can be shown by similar arguments: first, note that either m0(Xn) or161

m2(Xn) has to be 0 for almost all n by Lemma 2 (there cannot exist solutions162

to the systems ν1 = s, ν1 = 2s − |VG | and ν1 = s, ν1 = 2s − |VG | + 2163

simultaneously). Thus, suppose for instance that m2(Xn) = 0 for almost all164

n and that |VG | = s (so that there exists ν1 with ν1 = s = 2s − |VG |). But165

then, m1(Xn) = 0 for almost all n, as there is no solution of the system ν0 = s,166

0 = 2s− |VG |+ 1 = s+ 1. The second case is treated similarly.167

4.2 Three distinguished vertices168

First, let us consider the case when |VX n| is always even again. Then, we have169

m0(Xn) = am0(Xn−1)
νm2(Xn−1)

s−ν ,

m2(Xn) = bm0(Xn−1)
ν−1m2(Xn−1)

s−ν+1

for some integer coefficients a, b, where ν = 1
2
(|VG | − s). This system of170

recurrences is basically the same as in the case θ = 2.171

The case when |VX n| is always odd is also completely analogous. We obtain172

a system173

m1(Xn) = am1(Xn−1)
νm3(Xn−1)

s−ν ,

m3(Xn) = bm1(Xn−1)
ν−1m3(Xn−1)

s−ν+1,

where ν = 1
2
(|VG | − 1). The solution follows again along the same lines.174

Finally, let us consider the case when the parity of |VX n| is alternating. Then175
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we obtain the system176

m0(Xn) = a0m1(Xn−1)
νm3(Xn−1)

s−ν ,

m1(Xn) = a1m0(Xn−1)
κm2(Xn−1)

s−κ,

m2(Xn) = a2m1(Xn−1)
ν−1m3(Xn−1)

s−ν+1,

m3(Xn) = a3m0(Xn−1)
κ−1m2(Xn−1)

s−κ+1

for certain integers a0, a1, a2, a3, where ν = 1
2
|VG | and κ = 1

2
(|VG | − s − 1).177

We iterate this system once to obtain178

m0(Xn) = c0m0(Xn−2)
λm2(Xn−2)

s2−λ,

m2(Xn) = c2m0(Xn−2)
λ−1m2(Xn−2)

s2−λ+1

for integer coefficients c0, c2 and λ = ν + (κ− 1)s = 1
2

(
(s+ 1)|VG | − s2− 3s

)
.179

Again, this system can be solved as in Section 4.1.180

4.3 Examples181

Let us now apply Theorem 3 to the examples of Section 2.1.182

4.3.1 An example with two distinguished vertices183

See Section 2.1.1 for the construction of this example. We have θ = 2, s = 6,184

and |VG | = 6. Since δ = sθ − |VG | = 6 and |VX 0| = 2, the number |VX n| is185

always even. It is easy to see that the following system of recurrence equations186

holds:187

m0(Xn) = m0(Xn−1)
3m2(Xn−1)

3,

m2(Xn) = 2m0(Xn−1)
2m2(Xn−1)

4.
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Now the results of Section 4.1 imply that188

m0(Xn) = 23(6n−5n−1)/25 and m2(Xn) = 2(3·6n+10n−3)/25.

Notice that the quantity γ equals 1
2

in this case.189

4.3.2 Two-dimensional Sierpiński graphs190

For the construction see Section 2.1.2. Here, we have s = θ = 3, |VG | = 6191

and thus δ = sθ − |VG | = 3. Hence, the parity of |VX n| is alternating. The192

following system of recurrences holds:193

m0(Xn) = 2m1(Xn−1)
3,

m1(Xn) = 2m0(Xn−1)m2(Xn−1)
2,

m2(Xn) = 2m1(Xn−1)
2m3(Xn−1),

m3(Xn) = 2m2(Xn−1)
3,

which reduces to194

m0(Xn) = 16m0(Xn−2)
3m2(Xn−2)

6,

m2(Xn) = 16m0(Xn−2)
2m2(Xn−2)

7.

Since m1(X0) = m3(X0) = 1, we have m0(Xn) = m2(Xn) and m1(Xn) =195

m3(Xn) for all n. Therefore, m0(Xn) is given by the closed formula196

m0(Xn) = m2(Xn) = 2
3n−1

2

for all odd values of n. Note that γ = 1.197

This result was also found by Chang and Chen in [1], where two-dimensional198

Sierpiński graphs with a larger number b of subdivisions are considered as well199

(see Figure 4 for the case b = 3; the above case of ordinary Sierpiński graphs200
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Fig. 4. Sierpinski graph of level 1 and 2 with three subdivisions.

corresponds to b = 2). It turns out that γ = 1 for arbitrary b. To this end, we201

show by a simple bijection that m0(Xn) = m2(Xn) and m1(Xn) = m3(Xn) for202

all n, regardless of the number of subdivisions b.203

Lemma 4. Consider the sequence Xn of two-dimensional Sierpiński graphs204

with arbitrary number b of subdivisions. Then,205

m0(Xn) = m2(Xn) and m1(Xn) = m3(Xn)

for all n.206

Proof. We construct a bijection between matchings covering the left and right207

corners and those not covering these two corners. Given a matching of the first208

kind, consider all edges between vertices of the first (bottom) and second row.209

Each of these edges is replaced by an edge connecting the same second-row210

vertex with its other first-row neighbor. The horizontal matching edges in the211

first row are moved accordingly (it is not difficult to see that this is possible).212

The result is a matching of the second kind, and the process is also reversible.213

See Figure 5 for an example. �214

It follows immediately that γ = 1 for an arbitrary number of subdivisions.215

Furthermore, one has216

m1(Xn) = m3(Xn) = m1(X1)
(sn−1)/(s−1)

15



Fig. 5. The bijection that proves Lemma 4.

for b ≡ 0 mod 4 or b ≡ 1 mod 4 (so that |VX n| is odd for all n ≥ 1), where217

s =
(
b+1
2

)
. For b ≡ 2 mod 4 or b ≡ 3 mod 4, the formula is slightly more218

complicated, but essentially the same.219

Hence, the problem is reduced to that of counting perfect matchings in trian-220

gular grids (see [7] in this regard). The asymptotic growth constants221

αb = lim
n→∞

logmk(Xn)

|VX n|

(where k is chosen appropriately such that mk(Xn) is nonzero) can now be222

determined explicitly for small b, see Table 1. For b ≤ 5, these were given in223

the aforementioned paper of Chang and Chen [1].224

4.3.3 Examples for small and large γ225

We construct two families of self-similar graphs depending on a parameter226

µ ∈ N. Since θ = 2 in both cases the methods of Section 4.1 apply, where γ is227

given by γ = µ in the first case and γ = µ−1 in the second case. For the first228

family let s = 3µ and |VG | = 2µ+2 and for the second one let s = 3µ+2 and229

|VG | = 2µ+4. For both families the initial graph X0 is K2. The constructions230

are indicated in Figure 6.231
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α2 = 1
3 log 2 = 0.2310490602

α3 = 1
7 log 6 = 0.2559656385

α4 = 1
12 log 28 = 0.2776837092

α5 = 1
18 log 200 = 0.2943509648

α6 = 1
550 log

(
1386 · 219621

)
= 0.3069389564

α7 = 1
924 log

(
16814 · 3700427

)
= 0.3178972533

α8 = 1
42 log 957304 = 0.3279018162

α9 = 1
52 log 38016960 = 0.3356450564

α10 = 1
3528 log

(
220240306 · 231763140055

)
= 0.3416156081

α11 = 1
4950 log

(
10032960146 · 21689368180065

)
= 0.3474147262

α12 = 1
88 log 31159166587056 = 0.3530696544

Table 1

The values αb for small b.

...
...

...
...

Fig. 6. Construction schemes for two families of self-similar graphs.

5 Statistics232

Once it is possible to count perfect matchings, it is natural to consider certain233

shape statistics. Let us exhibit this for a particular example first. Consider the234

two-dimensional Sierpiński graph again, as in Section 4.3.2. An edge included235

in a perfect matching can point in three different directions: up, down or236
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horizontal. We are interested in the distribution of the number of edges in237

a certain direction (by symmetry, the distribution is the same for all three238

directions) in a random perfect matching of the level-n Sierpiński graph. In239

Figure 7 below, there are 7 ”up” edges, 9 ”down” edges, and 5 horizontal edges240

in the indicated perfect matching.241

ϕ3(1) ϕ3(2)

ϕ3(3)

Fig. 7. An example of a perfect matching in a Sierpiński graph of level 3.

In order to analyze this parameter, we slightly modify our definitions: we242

consider univariate polynomials now, where the coefficient of xk gives the243

number of perfect matchings with exactly k horizontal edges. Furthermore, we244

need more different variables, since the symmetry is not as strong any longer.245

For a subset K of {1, 2, 3}, we let mK(Xn) = mK(Xn, x) be the polynomial246

that corresponds to perfect matchings of Xn \ ϕn(K). Note that it is still247

true that mK(Xn) = 0 if |K| ≡ n mod 2. Furthermore, we have m{1}(Xn) =248

m{2}(Xn) and m{1,3}(Xn) = m{2,3}(Xn) by symmetry. Finally, we obtain a249

system of recurrences given in Table 2. The initial values are given by250

m∅(X0) = 0, m{1}(X0) = 1, m{2}(X0) = 1, m{3}(X0) = x,

m{1,2}(X0) = 0, m{1,3}(X0) = 0, m{2,3}(X0) = 0, m{1,2,3}(X0) = 1.

Straightforward induction shows thatm{3}(Xn) = xm{1,2,3}(Xn) andm∅(Xn) =251

18



m∅(Xn) = 2m{1}(Xn−1)m{2}(Xn−1)m{3}(Xn−1)

= 2m{1}(Xn−1)2m{3}(Xn−1),

m{1}(Xn) = m∅(Xn−1)
(
m{1,2}(Xn−1)2 +m{1,3}(Xn−1)2

)
,

m{3}(Xn) = m∅(Xn−1)
(
m{1,3}(Xn−1)2 +m{2,3}(Xn−1)2

)
= 2m∅(Xn−1)m{1,3}(Xn−1)2,

m{1,2}(Xn) = m{1,2,3}(Xn−1)
(
m{1}(Xn−1)2 +m{2}(Xn−1)2

)
= 2m{1,2,3}(Xn−1)m{1}(Xn−1)2,

m{1,3}(Xn) = m{1,2,3}(Xn−1)
(
m{1}(Xn−1)2 +m{3}(Xn−1)2

)
,

m{1,2,3}(Xn) = 2m{1,2}(Xn−1)m{1,3}(Xn−1)m{2,3}(Xn−1)

= 2m{1,2}(Xn−1)m{1,3}(Xn−1)2,

Table 2

Recurrences for matching polynomials

xm{1,2}(Xn) (this can also be seen from the bijection used in the proof of252

Lemma 4), which allows us to simplify a little further:253

m∅(Xn) = 2m{1}(Xn−1)
2m{3}(Xn−1),

m{1}(Xn) = m∅(Xn−1)
(
m{1,3}(Xn−1)

2 + x−2m∅(Xn−1)
2
)
,

m{3}(Xn) = 2m∅(Xn−1)m{1,3}(Xn−1)
2,

m{1,3}(Xn) = x−1m{3}(Xn−1)
(
m{1}(Xn−1)

2 +m{3}(Xn−1)
2
)
.

Let us now consider the case when n is odd (so that a perfect matching exists),254

the other case being analogous. Then, it is sufficient to consider m∅(Xn) and255

m{1,3}(Xn). Setting256

ar = ar(x) = m∅(X2r+1),

br = br(x) = m{1,3}(X2r+1),
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and iterating the above recurrences yields257

ar = 4a3
r−1b

2
r−1

(
x−2a2

r−1 + b2r−1

)2
,

br = 2x−1ar−1b
2
r−1

(
4a2

r−1b
4
r−1 + a2

r−1

(
x−2a2

r−1 + b2r−1

)2
)
,

with initial values m∅(X1) = 2x and m{1,3}(X1) = 1 + x2. Now define the258

quotient qr by259

qr = qr(x) =
xbr
ar
.

From the above equations, it follows that260

ar+1 = a9
r · 4x−6q2

r(1 + q2
r)

2 (2)

and qr+1 = f(qr), where f is the rational function261

f(t) =
1

2
+

2t4

(1 + t2)2
.

The initial values are a0 = 2x and q0 = 1
2
(1 + x2). Note that 1

2
≤ f(t) ≤ 5

2
262

for all t ∈ (0,∞); furthermore, it is not difficult to show that |f(1 + u) −263

1| ≤ 2(r + 1)−1/2 if |u| ≤ 2r−1/2, and so straightforward induction shows that264

|qr − 1| ≤ 2r−1/2 for all r, implying that qr tends to 1, uniformly in x. Taking265

logarithms in (2) yields266

log ar+1 = 9 log ar + log 16− 6 log x+ log
q2
r(1 + q2

r)
2

4
.

Set εr = εr(x) = log q2r(1+q2r)2

4
and note that εr = O(r−1/2). Hence,267

log ar = 9r log a0 +
r−1∑
j=0

9r−j−1(log 16− 6 log x+ εj)

= 9r log a0 +
9r − 1

8
(log 16− 6 log x)

+ 9r
∞∑
j=0

9−j−1εj −
∞∑
j=r

9r−j−1εj

=
6 log x− log 16

8
+ 9rG(x) +O(r−1/2),
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where G(x) is given by268

G(x) = log a0 −
6 log x− log 16

8
+
∞∑
j=0

9−j−1εj(x).

From this we obtain269

ar = m∅(X2r+1) = 2−1/2 x3/4 e9
rG(x) (1 +O(r−1/2)) (3)

uniformly for x > 0. Another simple induction shows that qr(1) = q′r(1) =270

q′′r (1) = 1 for all r. Hence, differentiating the explicit formula for log ar yields271

a′r(1)

ar(1)
= 9r − 6

r−1∑
j=0

9r−1−j + 4
r−1∑
j=0

9r−1−j =
32r+1 + 1

4

and272

a′′r(1)

ar(1)
−
(
a′r(1)

ar(1)

)2

= −9r + 6
r−1∑
j=0

9r−1−j + 2
r−1∑
j=0

9r−1−j = −1,

which implies that the mean of the number of horizontal edges is exactly273

a′r(1)

ar(1)
=

32r+1 + 1

4

(one third of the total number of edges in a perfect matching, as it was to be274

expected), while the variance is275

a′′r(1)

ar(1)
+
a′r(1)

ar(1)
−
(
a′r(1)

ar(1)

)2

=
32r+1 − 3

4
.

In the same way, one finds G′(1) = 3
4

and G′′(1) = 0. Finally, let Hr denote276

the number of horizontal edges in a random perfect matching of X2r+1, and277

consider the normalized random variable278

Nr =
Hr − µr
σr

, where µr =
32r+1 + 1

4
and σ2

r =
32r+1 − 3

4
.

Its moment generating function is given by279

E(etNr) = e−µrt/σr E(etHr/σr) = e−µrt/σr
ar
(
et/σr

)
ar(1)

.
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Making use of the asymptotic formula (3), we obtain280

E
(
etNr

)
= exp

(
−µrt
σr

+
3t

4σr
+ 9r

(
G(et/σr)−G(1)

))
(1 +O(r−1/2))

= exp

(
−µrt
σr

+
3t

4σr
+ 9r

(
G′(1)

t

σr
+G′(1)

t2

2σ2
r

+G′′(1)
t2

2σ2
r

))

×
(

1 +O

(
r−1/2 +

9rt3

σ3
r

))

= exp

(
t2

2
+O(r−1/2)

)

uniformly in t on any compact subset of (−∞,∞). Therefore, by Curtiss’281

Theorem [2], the normalized random variable tends weakly to a normal dis-282

tribution. Summing up, we have the following theorem:283

Theorem 5. The random variable “number of horizontal edges in a random284

perfect matching of Xn”, where n is odd, is asymptotically normal, with mean285

3n+1
4

and variance 3n−3
4

.286

Generally, if a sequence of graphs Xn is constructed as described in this paper,287

any edge in Xn can be “traced back” to an edge in X0, and one can consider the288

number of edges in a random perfect matching that can be traced back to one289

specific edge in X0. For θ = 2, i.e. two distinguished vertices, it follows quite290

immediately that the limit distribution is either normal (as in the example291

above) or degenerate, which can be seen as follows. Note that no symmetry292

condition at all was necessary, so we can consider polynomials m0(Xn, x) and293

m2(Xn, x) instead of the ordinary counting sequences m0(Xn) and m2(Xn).294

The solution is still the same—the polynomial m0(Xn, x) can be explicitly295

written as296

m0(Xn, x) = C0(x) γτn β(x)s
n

,
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where C0(x) and β(x) are given by297

C0(x) = (a−1γτ )1/(s−1)Q(x)−τ ,

β(x) = C−1
0 m0(X0, x),

Q(x) =
m2(X0, x)

m0(X0, x)

with a, b, s, ν, γ, τ as in Section 4.1. The normalized polynomialm0(Xn, x)/m0(Xn, 1)298

is thus given by299

m0(Xn, x)

m0(Xn, 1)
=

(
Q(x)

Q(1)

)−τ(
Q(x)τm0(X0, x)

Q(1)τm0(X0, 1)

)sn

,

and now there are several ways to show asymptotic normality (unless the300

distribution is degenerate), for instance Hwang’s quasi-power theorem [4].301

Generally, for θ ≥ 3, it can be expected that the distribution is still asymptot-302

ically normal or degenerate, but this seems to be difficult to prove, considering303

that mere counting of perfect matchings becomes more intricate for θ > 3 (see304

the following section).305

6 The general case306

In this section, we consider the case of arbitrary θ. First, we use the exam-307

ple of higher-dimensional Sierpiński graphs to exhibit the problems arising in308

the general case. Then, we consider Viček graphs, for which it is still possi-309

ble to obtain explicit formulæ. This is further generalized and discussed in310

Section 6.2.311
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6.1 Examples312

6.1.1 Higher-dimensional Sierpiński graphs313

For the construction see Section 2.1.2. Let us consider the three-dimensional314

case: d = 3. Then s = θ = 4, |VG | = 10, and δ = 6. Since |VX 0| = 4,315

the number |VX n| is always even. A short calculation yields the following316

recurrences:317

m0(Xn+1) = 8m0(Xn)m2(Xn)3,

m2(Xn+1) = 4m0(Xn)m2(Xn)2m4(Xn) + 4m2(Xn)4,

m4(Xn+1) = 8m2(Xn)3m4(Xn).

The initial values are given by (m0(X0),m2(X0),m4(X0)) = (3, 1, 1).318

It is obvious from the recurrences that319

m0(Xn)

m4(Xn)
= 3

for all n. Furthermore, if we set320

qn =
m2(Xn)

m4(Xn)
, then qn+1 =

q2
n + 3

2qn
,

and so qn converges to
√

3 at a doubly exponential rate, i.e. qn =
√

3+O(C2n
)321

for some 0 < C < 1. The same follows for the quotient322

m0(Xn)

m2(Xn)
=

3

qn
,

and so we have323

m0(Xn+1) =
8

3
√

3
m0(Xn)4

(
1 +O(C2n

)
)
.

24



Using the same techniques as in the previous section, we obtain324

m0(Xn) ∼ α · β4n

,

where α =
√

3
2

and β = 2.3582688182. β can also be expressed explicitly as325

β = 2 ·
∞∏
j=0

q3·4−j−1

j .

This constant, without the precise asymptotic behavior, was also determined326

in [1].327

Due to the fact that the polynomials in the recurrences are no longer mono-328

mials, there is no explicit formula any more. The asymptotic behavior can329

be obtained for Sierpiński graphs of higher dimension by essentially the same330

ideas (compare again [1]), but the technical details become increasingly te-331

dious, and it is not quite clear how a general result for higher dimensions332

might be found.333

6.1.2 Viček graphs334

See Section 2.1.3 for definitions. Here we have s = θ + 1, |VG | = θ2, δ = θ,335

|VX 0| = θ. If θ is even, then |VX n| is always even, too. So let us restrict to336

this case. It is then easy to check that337

mk(Xn) = m0(Xn−1)
θ−km2(Xn−1)

kmθ−k(Xn−1)

for even k. We assume that θ ≥ 6, the other cases being degenerate and thus338

easier. It is sufficient to consider the quantities m0(Xn), m2(Xn), mθ−2(Xn),339
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and mθ(Xn):340

m0(Xn) = m0(Xn−1)
θmθ(Xn−1),

m2(Xn) = m0(Xn−1)
θ−2m2(Xn−1)

2mθ−2(Xn−1),

mθ−2(Xn) = m0(Xn−1)
2m2(Xn−1)

θ−1,

mθ(Xn) = m0(Xn−1)m2(Xn−1)
θ,

Using basic linear algebra it is easy to derive closed formulæ from these re-341

currences. Since the formulæ are rather long, we will not state them here.342

However, by taking logarithms we obtain xn = Axn−1, where343

A =



θ 0 0 1

θ − 2 2 1 0

2 θ − 1 0 0

1 θ 0 0



and xn =



logm0(Xn)

logm2(Xn)

logmθ−2(Xn)

logmθ(Xn)



.

The eigenvalues of A are s = θ+ 1, 1, 1,−1 (taking algebraic multiplicity into344

account), where the eigenvalue 1 has geometric multiplicity 1.345

6.2 A special case346

For simplicity we restrict to the case when VX n is always even for n > 0. As347

in the cases θ = 2 and θ = 3, there are also examples of self-similar graphs348

with θ ≥ 4 (such as the Viček graphs discussed above), where the recurrences349

for mk(Xn) have the special form350

m2k(Xn) = bk
∏
i

m2i(Xn−1)
ak,i ,
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which leads to exact formulæ for the quantities m2k(Xn). To this end, set351

xk,n = logm2k(Xn) and xn = (x0,n, x1,n, . . . ); then352

xn = Axn−1 + c,

where A = (ak,i)k,i and c = (log bk)k. The recurrence equation above can be353

solved easily by means of linear algebra:354

Proposition 1. For even k the quantity logmk(Xn) is given by the solution of355

a linear recurrence equation. Moreover, s and 1 are eigenvalues of the matrix356

A.357

Proof. The first part is plain. Using the homogeneity of the recurrences A1 =358

s1 follows (1 = (1, 1, 1, . . . )). The second restriction on the exponents of the359

monomials in the system (see Lemma 2) implies that Af = δ1 + f , where360

f = (0, 2, 4, . . . ). Together with A1 = s1 we obtain361

A
(
f − δ

s−1
1
)

=
(
f − δ

s−1
1
)
. �

Of course a similar result holds when the parity of |V Xn| is odd or alternating.362

6.3 Final Remark363

As demonstrated, there so no hope for closed formulæ in the general case.364

However, the examples suggest that logm0(Xn) is always asymptotically equal365

to the solution of a linear recurrence. Furthermore, it is likely that such a366

solution contains only powers of the form 1n, (−1)n and sn. Note that this367

was the case in all examples so far. Moreover, we have verified this conjecture368

for a subclass where the structure of the self-similar graphs is “tree-like”, as369
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for the Viček graphs.370
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