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Abstract

In the drug design process, one wants to construct chemical compounds with cer-
tain properties. In order to establish the mathematical basis for the connections be-
tween molecular structures and physicochemical properties of chemical compounds,
some so-called structure-descriptors or ”topological indices” have been put forward.
Among them, the Wiener index is one of the most important. A long standing con-
jecture on the Wiener index ([6], [9]) states that for any positive integer n (except
numbers from a given 49 element set), one can find a tree with Wiener index n. We
proved this conjecture in [13] and [14]. However, more realistic molecular graphs
are trees with degree ≤ 3 and the so-called hexagon type graphs. In this paper, we
prove that every sufficiently large integer n is the Wiener index of some caterpillar
tree with degree ≤ 3, and every sufficiently large even integer is the Wiener index
of some hexagon type graph.

Preprint submitted to Elsevier Science 8 January 2008



1 Introduction

The structure of a chemical compound is usually modelled as a polygonal
shape, which is often called the molecular graph of this compound. It has
been found that many properties of a chemical compound are closely related
to some topological indices of its molecular graph. Among these topological
indices, the Wiener index is probably the most important one.

The Wiener index is a distance-based graph invariant, used as one of the
structure descriptors for predicting physicochemical properties of organic com-
pounds (often those significant for pharmacology, agriculture, environment-
protection, etc.). The Wiener index was introduced by the chemist H. Wiener
about 60 years ago to demonstrate correlations between physicochemical prop-
erties of organic compounds and the topological structure of their molecular
graphs. This concept has been one of the most widely used descriptors in re-
lating a chemical compound’s properties to its molecular graph. Therefore, in
order to construct a compound with a certain property, one may want to build
some structure that has the corresponding Wiener index.

The biochemical community has been using the Wiener index to correlate a
compound’s molecular graph with experimentally gathered data regarding the
compound’s characteristics. In the drug design process, one wants to construct
chemical compounds with certain properties. The basic idea is to construct
chemical compounds from the most common molecules so that the result-
ing compound has the expected Wiener index. For example, larger aromatic
compounds can be made from fused benzene rings as follows (Figure 1):
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Fig. 1. Larger aromatic compounds can be made from fused benzene rings.

Compounds with different structures (and different Wiener indices), even with
the same chemical formula, can have different properties. For example, cocaine
and scopolamine, both with chemical formula C17H21NO4, have different prop-
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erties and different Wiener indices. Hence it is indeed important to study the
structure (and thus also the Wiener index) of the molecular graph besides the
chemical formula.

From the close relationship between the Wiener index and the chemical prop-
erties of a compound, the important inverse Wiener index problem [1,6] arises:
Given a positive integer n, can we find a structure (graph) with Wiener index
n?

Goldman et al. [3] solved the inverse Wiener index problem for general graphs:
they showed that for every positive integer n there exists a graph G such that
the Wiener index of G is n.

Since the majority of the chemical applications of the Wiener index deal with
chemical compounds that have acyclic organic molecules, whose molecular
graphs are trees, the inverse Wiener index problem for trees attracts more
attention and, actually, most of the prior work on Wiener indices deals with
trees [2]. When the graph is restricted to trees, the problem is more compli-
cated. Gutman and Yeh [6] conjectured that, for all but a finite set of integers
n, one can find a tree with Wiener index n.

Lepović and Gutman [9] checked the integers up to 1206 and found that the
following numbers are not Wiener indices of any trees:

2, 3, 5, 6, 7, 8, 11, 12, 13, 14, 15, 17, 19, 21, 22, 23, 24, 26, 27, 30, 33, 34, 37,
38, 39, 41, 43, 45, 47, 51, 53, 55, 60, 61, 69, 73, 77, 78, 83, 85, 87, 89, 91, 99,
101, 106, 113, 147, 159.

They claimed that the listed were the only “forbidden” integers and posed the
following conjecture.

Conjecture 1.1 There are exactly 49 positive integers that are not Wiener
indices of trees, namely the numbers listed above.

A recent computational experiment by Ban, Baspamyatnikh and Mustafa [1]
shows that every integer n ∈ [103, 108] is the Wiener index of some caterpillar
tree. Thus, the conjecture is proved if one is able to show that every integer
greater than 108 is the Wiener index of a tree.

In [13] and [14], we proved that every integer n > 108 is the Wiener index
of some tree. Combined with Ban, Baspamyatnikh and Mustafa’s results, we
proved that Conjecture 1.1 is indeed true.

However, the molecular graphs of most practical interest have natural restric-
tions on their degrees corresponding to the valences of the atoms and are
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typically trees or have hexagonal or pentagonal cycles. ([11] and [5]).

In this paper, we study the inverse Wiener index problem for the following
two kinds of structures:

1) trees with degree ≤ 3 (Figure 2);

2) hexagon type graphs (Figure 3).

q q q q q q qq qq q q qq q

q q q q
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Fig. 2. Caterpillar tree with degree ≤ 3
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Fig. 3. The hexagon type graph.

We define a family of trees T = T (n, x1, x2, . . . , xk), where

V = {v1, . . . , vn} ∪ {ux1 , . . . , uxk
},

E = {(vi, vi+1), 1 ≤ i ≤ n− 1} ∪ {(vxi
, uxi

), 1 ≤ i ≤ k},
where n and xi, 1 ≤ i ≤ k, are integers such that 1 ≤ x1 < x2 < . . . < xk ≤ n
(Figure 2).

We also define a family of hexagon type graphs G = G(n, x1, x2, . . . , xk),
where we have n adjacent hexagons vi1vi2 . . . vi6 , for i = 1, 2, . . . , n. The edges
vi4vi5 , v(i+1)2v(i+1)1 are indentified for i = 1, 2, . . . , n− 1. On the xjth hexagon
there is a pendant edge incident to vj3 , for j = 1, . . . , k (Figure 3).

Another popular structure involves pentagons. We note that our proofs can
be easily modified to solve the inverse Wiener index problem in that case. For
the two kinds of graphs (Figure 2 and Figure 3) to be considered, we shall
prove the following results:

Theorem 1.1 Every sufficiently large integer n is the Wiener index of a
caterpillar tree with maximum degree ≤ 3.

Theorem 1.2 Every sufficiently large integer n is the Wiener index of a
hexagon type graph.
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Remark 1.3 Even though our proofs are not algorithmic, they can be turned
into algorithms by merely checking all the possible cases. Unfortunately, the
complexity is quite high; the running time for finding a graph from our graph
classes with given Wiener index W is pseudo-polynomial in W.

Notation: In the proofs of Theorem 1.2 and Lemma 4.1 (in the appendix), we
shall adopt the standard notation ≪ and O. For a complex-valued function
f(x) and a positive function g(x), f(x)≪ g(x) or f(x) = O(g(x)) means that
there is an absolute positive constant c such that |f(x)| ≤ cg(x).

2 Preliminaries

For a graph T = (V,E), denote by d(vi, vj) the length of the shortest path
between two distinct vertices vi, vj ∈ V . Define dT (v) =

∑

u∈V d(v, u). The
Wiener index W (T ) is then defined as

W (T ) =
1

2

∑

v∈V

dT (v).

For T = T (n, x1, x2, . . . , xk), as shown in Figure 2, we have

W (T ) =
∑

1≤i≤j≤n

d(vi, vj) +
n
∑

i=1

k
∑

j=1

d(vi, uxj
) +

∑

1≤i≤j≤k

d(uxi
, uxj

)

=
n3 − n

6
+

n
∑

i=1

k
∑

j=1

(1 + |xj − i|) +
∑

1≤i<j≤k

(2 + xj − xi),

which can be rewritten as

n3

6
+

kn2

4
+

(6k − 1)n

6
− k3 − 12k2 + 14k

12
+

k
∑

j=1

(

xj + j − 1− k + n

2

)2

(1)

after some elementary simplification steps.

For G = G(n, x1, x2, . . . , xk) as shown in Figure 3, we have

W (G) =
16n3 + 36n2 + 26n + 3

3
+

∑

1≤i<j≤k

(2 + 2(xj − xi))

+
k
∑

i=1

(4n2 + 8xi
2 − 8nxi + 12n− 8xi + 7). (2)
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We note that, from (2), W (G) and k have different parity. Due to this (some-
what annoying) phenomenon, the Wiener indices of our hexagon type graphs
with a fixed number of “leaves” comprise at most half of positive integers. To
show that every large integer is the Wiener index of such a graph, one should
consider at least two different k, with different parities.

Expanding the last sum in (2) and collecting terms, we see that W (G) is equal
to

16n3 + 36n2 + 26n + 3

3
+k(4n2+12n+k+6)+

k
∑

i=1

(8xi
2−(8n+2k−4i+10)xi).

Completing squares is not necessary for our proof of Theorem 1.2, but it may
make the expression look better. By doing so, we have

W (G) =
16n3 + 36n2 + 26n + 3

3
+ k

(

2n2 + 8n + k + 4− k2 − 1

24

)

+
1

8

k
∑

i=1

(8xi − 4n− k − 5 + 2i)2. (3)

3 Proof of Theorem 1.1

We will use formula (1) with some special k and show that all sufficiently large
integers can be written as W (T (n, x1, . . . , xk)). Due to the restriction xi 6= xj

(for 1 ≤ i < j ≤ k), the well-known Four Square Theorem (k = 4) does not
directly yield what we want. We thus need to take some larger k, and we find
that k = 8 is good enough for our purpose. Taking k = 8 and n = 2s, we can
rewrite (1) as

W (T (n, x1, . . . , x8)) =
4s3

3
+ 8s2 +

47s

3
+ 12 +

8
∑

j=1

(xj + j − 5− s)2. (4)

If we now set yj := xj + j − 5− s, we obtain

W (T (n, x1, . . . , x8)) =
4s3

3
+ 8s2 +

47s

3
+ 12 +

8
∑

j=1

y2
j (5)

subject to the restrictions

−3− s ≤ y1 < y2 < . . . < y8 ≤ 3 + s

and without any two consecutive yj (since no two of the xj may be equal).
Now we need the following lemma, which is a slight modification of Lagrange’s
famous four-square theorem:
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Lemma 3.1 Let N > 103 and 4 ∤ N . Then N can be written as a2
1+a2

2+a2
3+a2

4

with nonnegative integers a1 < a2 < a3 < a4 and a2 ≥ 2.

Proof. It is well known (see [7, Theorem 386]) that the number of represen-
tations of a positive integer N as the sum of 4 squares (representations which
differ only in order or sign counting as different) is

r4(N) = 8
∑

d|N
4∤d

d,

while the number of representations of N as the sum of 2 squares is

r2(N) = 4
∏

pr‖N
p≡1 mod 4

(r + 1)

if every prime factor ≡ 3 mod 4 appears with an even power in the factoriza-
tion of N (and 0 otherwise). The representations violating the first condition
correspond to representations of the form 2a2 + b2 + c2. For each fixed a ≥ 0
and each representation b2 +c2 of N−2a2, we have at most 24 representations
of N as a sum of 4 squares (six possible choices for the positions of the two
a’s, and two additional choices of sign).

The representations violating the second condition correspond to representa-
tions of the form 1 + a2 + b2. For each representation a2 + b2 of N − 1, this
gives us at most 24 representations of N as a sum of 4 squares (twelve possible
choices for the positions of 0 and 1, and one additional choice of sign).

So the number of representations violating any of the conditions is at most

24
∑

a≤
√

N/2

r2(N − 2a2) + 24r2(N − 1).

Now, for a non-negative integer r, by induction we have

r + 1 ≤ 3√
5
· 5r/4, r + 1 ≤ 2

4
√

13
· 13r/4, and r + 1 ≤ 2r ≤ pr/4 if p ≥ 17.

Thus

r2(n) = 4
∏

pr‖n

p≡1 (mod 4)

(r + 1) ≤ 4 · 3√
5
· 2

4
√

13

∏

pr‖n

p≡1 (mod 4)

pr/4 ≤ 4 · 3√
5
· 2

4
√

13
· n1/4.

Therefore, if 4 ∤ N and N ≥ 28561 = 134, the number of representations
violating one of the conditions is at most

24
(

√

N/2 + 2
)

· 24
4
√

325
N1/4 ≤ 96

√
2
(

√

N/2 + 2
)

N1/4 < 104N3/4 < 8N < r4(N).
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So there must be some representation not violating any of the conditions. This
proves the lemma for N > 28560, but it turns out that it also holds true for
N ∈ [104, 28560] by explicit testing. 2

Remark 3.2 The condition 4 ∤ N may not be skipped – for example, 4k cannot
be represented as a sum of four squares without violating the conditions.

Corollary 3.3 If 4 ∤ N , N > 103, one can always find integers z1, z2, z3, z4

such that N = z2
1 + . . .+z2

4, z1 < . . . < z4 and no two of the zi are consecutive.

Let a1 < a2 < a3 < a4 satisfy the conditions of the lemma. Choose z1 = −a3,
z2 = −a1, z3 = a2 and z4 = a4. Then,

z1 < −a2 < z2 < 1 < z3 < a3 < z4,

which already proves the claim. 2

Remark 3.4 Obviously, z4 ≤ ⌊
√

N⌋ and |z1| ≤ ⌊
√

N⌋ − 1.

Proposition 3.5 Let K ≥ 15. Then any integer N in the interval [4K2 −
8K + 112, 5K2 − 16K + 21] can be written as y2

1 + . . . y2
8, where the yi are

integers satisfying
−K ≤ y1 < y2 < . . . < y8 ≤ K

and no two of them are consecutive.

Proof. Take y1 = −K, y7 = K − 2, y8 = K and either y2 = −K + 2
or y2 = −K + 3. By the corollary and the subsequent remark, any integer
M ∈ [104, (K − 3)2 − 1], 4 ∤ M , can be written as y2

3 + . . . + y2
6, where

−K = y1 < y2 < −K + 4 < y3 < y4 < y5 < y6 < K − 3 < y7 < y8 = K

(no two of them being consecutive). Now

(−K)2 + (−K + 2)2 + (K − 2)2 + K2 = 4K2 − 8K + 8 ≡ 0 mod 4

and

(−K)2 + (−K + 3)2 + (K − 2)2 + K2 = 4K2 − 10K + 13 ≡ 2K + 1 mod 4.

So all integers 6≡ 0 mod 4 in the interval [4K2−8K+112, 5K2−14K+16] and
all integers 6≡ 2K+1 mod 4 in the interval [4K2−10K+117, 5K2−16K+21]
can be written in the required way. Since 0 6≡ 2K +1 mod 4, this means that
in fact all integers in the interval [4K2 − 8K + 112, 5K2 − 16K + 21] can be
written in the required way, which proves the claim. 2

Theorem 3.6 All integers ≥ 3856 are Wiener indices of trees of the form
T (n, x1, . . . , x8) (x1 < x2 < . . . < x8) and thus Wiener indices of chemical
trees.
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Proof. By the preceding proposition, any integer in the interval [4K2− 8K +
112, 5K2 − 16K + 21] can be written as y2

1 + . . . + y2
8, where the yi satisfy our

requirements and −K ≤ y1 < . . . < y8 ≤ K. If we take the union of these
intervals over 21 ≤ K ≤ s + 3, we see that in fact any integer in the interval
[1708, 5s2 + 14s + 18] can be written as y2

1 + . . . y2
8, where the yi satisfy our

requirements and −3−s ≤ y1 < . . . < y8 ≤ s+3. Short computer calculations
show that, for s ≥ 7, even any integer in the interval [224, 5s2 + 14s + 18] can
always be written that way. But this means that for any s ≥ 7, all integers in
the interval

[

4s3

3
+ 8s2 +

47s

3
+ 236,

4s3

3
+ 13s2 +

89s

3
+ 30

]

are Wiener indices of trees of the form T (n, x1, . . . , x8). Taking the union
over all these intervals, we see that all integers ≥ 12567 are contained in an
interval of that type. By an additional computer search (n ≤ 40 will do) in
the remaining interval, one can get this number down to 3856. 2

Remark 3.7 By checking k = 4, 5, 6, 7 and finally all n ≤ 17, one obtains
a list of 250 integers (the largest being 927) that are not Wiener indices of
trees of the form T (n, x1, . . . , xk) with maximal degree ≤ 3. Further computer
search gives a list of 127 integers that are not Wiener indices of trees with
maximal degree ≤ 3 – these are 16, 25, 28, 36, 40, 42, 44, 49, 54, 57, 58, 59,
62, 63, 64, 66, 80, 81, 82, 86, 88, 93, 95, 97, 103, 105, 107, 109, 111, 112, 115,
116, 118, 119, 126, 132, 139, 140, 144, 148, 152, 155, 157, 161, 163, 167, 169,
171, 173, 175, 177, 179, 181, 183, 185, 187, 189, 191, 199, 227, 239, 251, 255,
257, 259, 263, 267, 269, 271, 273, 275, 279, 281, 283, 287, 289, 291, 405 and the
49 values that cannot be represented as the Wiener index of any tree. This list
reduces to the following values if one considers also trees with maximal degree
= 4: 25, 36, 40, 49, 54, 57, 59, 80, 81, 93, 95, 97, 103, 105, 107, 109, 132, 155,
157, 161, 163, 167, 169, 171, 173, 177, 239, 251, 255 and 257.

4 Proof of Theorem 1.2

We are supposed to show that every sufficiently large integer N is the Wiener
index of a hexagon type graph. As we have noticed that N and k must have
opposite parities, we have to prove the theorem separately in two cases subject
to the parity of N . Nevertheless, since the proofs for odd N and even N are
almost identical, we shall give a proof of the theorem for odd N only, and a
proof for large even N follows the same way. Similar to the proof of Theorem
1.1, we need more variables than expected to guarantee that the side conditions
xi 6= xj (for i 6= j ≤ k) are satisfied. For large odd N , we take k = 10 which
is large enough for our purpose. (For even N , one can see that, with the same
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argument we shall carry out for odd N , it suffices to take k = 9 or any larger
fixed odd integer.)

Suppose N is a sufficiently large odd integer. Let k = 10, then from (3) we
have

W (G) =
16

3
n3 + 32n2 +

266

3
n +

399

4
+

1

8

10
∑

i=1

(8xi − 4n− 15 + 2i)2.

We thus want to show that

N =
16

3
n3 + 32n2 +

266

3
n +

399

4
+

1

8

10
∑

i=1

(8xi − 4n− 15 + 2i)2

for certain integers xi, i = 1, 2, ..., 10 satisfying

1 ≤ x1 < x2 < · · · < x9 < x10 ≤ n. (6)

Let

f(x) =
16

3
x3 + 32x2 +

266

3
x +

399

4
,

and α(N) be the positive real root of f(x) = N −N
1
3 . It is quite easy to see

that α(N) =
(

3
16

N
)

1
3 − 2 + O(N− 1

3 ).

Let n = [α(N)]. Then we have n =
(

3
16

N
)

1
3 + O(1), and thus n < N

1
3 < 2n.

Also, we have

0 ≤ N − f(n)−N
1
3 < f(n + 1)− f(n) = 16n2 + 80n + 126. (7)

We note that 8f(n) ≡ −2(mod16). To settle the theorem for large odd N , we
thus want to show that, for every integer M satisfying

8n ≤M ≤ 8(16n2 + 82n + 126) and M ≡ 10 (mod 16), (8)

we have

M =
10
∑

i=1

(8xi − 4n− 15 + 2i)2

for some xi (i = 1, 2, ..., 10) satisfying (6).

Let K = [
√

M/24], and

xi = [n/2] + K + i, i = 6, . . . , 10. (9)

Since K ≤
√

8(16n2 + 82n + 126)/24 < 12
25

n, we have

n/2 +
√

M/24 < x6 < x7 < x8 < x9 < x10 ≤ n. (10)

10



It is very easy to check that

10
∑

i=6

(8xi − 4n− 15 + 2i)2 ≡ 8n + 13 (mod 16) (11)

and, noticing that M is sufficiently large,

5

9
M <

10
∑

i=6

(8xi − 4n− 15 + 2i)2 <
3

5
M. (12)

From (11), (12) and (8), we see that it is sufficient to show that

5
∑

i=1

(8xi − 4n− 15 + 2i)2 = L (13)

for an integer L satisfying

2

5
M ≤ L ≤ 4

9
M and L ≡ 8n + 13 (mod 16) (14)

with
1 ≤ x1 < x2 < x3 < x4 < x5 ≤ n/2 +

√
M/24. (15)

To this end, we make use of the following proposition for which we shall give
a proof in the appendix.

Proposition 4.1 Suppose gi(y) = aiy
2 + biy + ci (i = 1, . . . , 5) are quadratic

polynomials of integer coefficients, and ai > 0 for i = 1, . . . , 5. di and Di

(i = 1, . . . , 5) are positive constants satisfying

di < Di, i = 1, . . . , 5,
5
∑

i=1

aidi
2 < 1− ǫ < 1 + ǫ <

5
∑

i=1

aiDi
2

for some constant ǫ > 0. Suppose L is a sufficiently large integer. Let H be
the hypothesis that the congruence

g1(y1) + g2(y2) + · · ·+ g5(y5) ≡ L (mod pγp)

is solvable for every prime power pγp, where γp = max{γp,1, . . . , γp,5} with

γp,j :=











θp,j + 2 if p = 2

θp,j + 1 if p > 2,

and θp,j is the highest power of p such that

gj
′(x) ≡ 0 (mod pθp,j)
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for all values of x.

If the hypothesis H is satisfied, then the equation

g1(y1) + g2(y2) + · · ·+ g5(y5) = L (16)

with di

√
L < yi ≤ Di

√
L has at least cL

3
2 integer solutions, where c is a certain

positive constant depending only on ai’s, di’s, and Di’s, i = 1, . . . , 5.

With the aid of Proposition 4.1, we shall show that there exists some integer
solution to (13) subject to conditions (14), (15). Let

gi(y) = (8y − 4(n− 2[n/2])− 15 + 2i)2, i = 1, . . . , 5.

It is clear that γp = 1 for every prime p ≥ 3. Note that each {gj(y) (mod p) :
y = 0, .., p−1} contains p+1

2
residue classes modulo p. Thus, from the Davenport-

Chowla Theorem (cf. [12], Lemma 2.14), {g1(y1) + g2(y2) (mod p) : y1, y2 =
0, .., p− 1} covers all residue classes modulo p. Thus, for every prime p ≥ 3,

g1(y1) + g2(y2) + · · ·+ g5(y5) ≡ L (mod pγp)

is solvable.

For p = 2, we note that θ2,j = 4 is the largest integer such that

24 | gi
′(y) for all y.

So, to show that congruence condition for p = 2 holds, it thus suffices to show
that

g1(y1) + g2(y2) + · · ·+ g5(y5) ≡ L (mod 26) (17)

is solvable. Expanding the left-hand side of (17), we see that

5
∑

i=1

g(yi) ≡ 16

(

5
∑

i=1

(−1)iyi + (n− 2[n/2] + 1)2

)

+8(n− 2[n/2]) + 45 (mod 64).

It is then easy to check that (17) has a non-trivial solution

y1 = 0, y2 = y3 = 1, y4 =
L− 8(n− 2[n/2]) + 19

16
, y5 = (n− 2[n/2] + 1)2.

Therefore, the hypothesis H is satisfied. Now, let

di =
1

18
+

3i

4× 105
, Di =

1

18
+

3i

2× 105
, i = 1, . . . , 5. (18)

Then we have

5
∑

i=1

(8di)
2 = 0.9941 . . . < 1,

5
∑

i=1

(8Di)
2 = 1.0006 . . . > 1.

12



Now all conditions required by Proposition 4.1 are satisfied, thus, for the
integer L satisfying (14), the equation (16) has solutions with di

√
L < yi ≤

Di

√
L, i = 1, . . . , 5. Let xi = [n/2] + yi (i = 1, . . . , 5), and note that

di < Di, i = 1, . . . , 5, and Di + 10−6 < di+1 i = 1, . . . , 4,

Lemma 4.1 guarantees a solution for (13) with

[n/2] < x1 < x2 < x3 < x4 < x5 ≤ [n/2] + D5

√
L < n/2 +

√
M/24.

Theorem 1.2 thus follows. �
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Appendix

The result of Proposition 4.1 is probably the simplest case of representing
large integers as a sum of polynomials of integer coefficients. Surprisingly,
this result, though seemingly well known to experts of the Hardy-Littlewood
method, could not be found in the literature. We thus give a proof here. The
argument is very similar to [8]. While the main result in [8] is on sums of
polynomials of higher degrees, most lemmas are given in a general setting. For
a shorter proof, we shall make use of various results in [8], though some of
them are not necessarily best-possible for quadratic polynomials.

Throughout, ǫ is any sufficiently small positive number, not necessarily the
same at all places.

For j = 1, 2, . . . , 5, let

fj(α) :=
∑

dj

√
L<y≤Dj

√
L

e(gj(y)α), where e(t) = exp(2πit).

Let R(L) be the number of solutions of equation (16) subject to the given

13



conditions. For an integer n, and any real number δ, we have

∫ 1+δ

δ
e(nα)dα =











1 if n = 0

0 if n 6= 0,
(19)

which yields

R(L) =
∫ 1+δ

δ
f1(α)f2(α) · · · f5(α)e(−Lα)dα (20)

for any δ ∈ R.

As in [8], we let Q = L
1
3 , and δ = Q

L
. For integers a, q satisfying 1 ≤ a ≤

q ≤ Q and (a, q) = 1, let M(q, a) be the set of real numbers α satisfying
|qα − a| < Q/L. It is clear that M(q, a) ⊂ [Q/L, 1 + Q/L] and that the
M(q, a) are pairwise disjoint. We define the major arcs M as the union of
such M(q, a) (with 1 ≤ a ≤ q ≤ Q and (a, q) = 1), and the minor arcs m as
m = [Q/L, 1 + Q/L]\M. Then we have

R(L) = RM(L) + Rm(L) (21)

with the two parts respectively corresponding to the integral of the integrand
in (20) on M and m.

From Weyl’s inequality ([12], Lemma 2.4), we know that, when α ∈ m, fj(α)≪
(L/Q)

1
2
+ǫ. From this, Hölder’s inequality, and Hua’s Lemma ([12], Lemma 2.5),

we have

Rm(L)≪ (L/Q)
1
2
+ǫ
∫

m

|f2f3f4f5|dα≪ (L/Q)
1
2
+ǫ

5
∏

j=2

(

∫ 1

0
|fj(α)|4dα

)
1
4

≪ (L/Q)
1
2
+ǫ · L1+ǫ ≪ L

3
2
−ǫ. (22)

Next we shall approximate fj(α) on major arcs with some “nicer” functions.
Suppose α = a

q
+ β, with 1 ≤ a ≤ q ≤ Q, (a, q) = 1, and |β| < Q

qL
. For

j = 1, 2, . . . , 5, let

vj(β) :=
∫ Dj

√
L

dj

√
L

e(βajt
2)dt =

1

2
aj

− 1
2

∫ ajDj
2L

ajdj
2L

t−
1
2 e(βt)dt,

and

uj(β) :=
1

2
aj

− 1
2

∑

ajdj
2L<m≤ajDj

2L

m− 1
2 e(βm),

where aj is the leading coefficient of gj(y). It should be noted that, by abelian
summation,

14



uj(β) =
1

2
aj

− 1
2

∫ ajDj
2L

ajdj
2L

t−
1
2 e(βt)d[t]

= vj(β) + O

(

∫ ajDj
2L

ajdj
2L

∣

∣

∣

∣

∣

− 1

2
t−

3
2 e(βt) + 2πiβt−

1
2 e(βt)

∣

∣

∣

∣

∣

dt

)

= vj(β) + O
(

L− 1
2 + L

1
2 |β|

)

. (23)

We also let

Vj(α) = Vj(α; q, a) = q−1Sj(q, a)uj(β),

where Sj(q, a) is the Gaussian sum given by

Sj(q, a) =
q
∑

x=1

e

(

agj(x)

q

)

which is well-known to be O(
√

q). From (23) and Lemma 5.4 in [8], we know
that for α = a

q
+ β ∈M

fj(α) = Vj(α) + O(L
1
3 ). (24)

And, from Lemma 2.8 in [12], we have, for α = a
q

+ β with |β| < 1
2
,

Vj(α)≪ (L/q)
1
2 (1 + L|β|)− 1

2 . (25)

This gives

RM(L) =
∑

q≤Q

∑

1≤a≤q

(a,q)=1

∫

M(q,a)
V1(α)f2(α) · · · f5(α)e(−αL)dα + E,

say, where

E =
∑

q,a

∫

M(q,a)
(f1 − V1)(f2f3f4f5)e(−αL)dα

≪L
1
3

∫ 1

0
|f2f3f4f5|dα≪ L

1
3 L1+ǫ ≪ L

3
2
−ǫ

by Hölder’s inequality and Hua’s Lemma. Continuing the same process, (notic-

ing that Vj(α)≪ |fj(α)|+ L
1
3 ), we get

RM(L) =
∑

q≤Q

∑

1≤a≤q

(a,q)=1

∫

M(q,a)
V1(α)V2(α) · · ·V5(α)e(−αL)dα + O(L3/2−ǫ). (26)

From (25), we have

15



∫

M(q,a)
V1(α) · · ·V5(α)e(−αL)dα−

∫ a
q
+ 1

2

a
q
− 1

2

V1(α) · · ·V5(α)e(−αL)dα

≪
(

∫ 1
2

Q

qL

+
∫

Q

qL

− 1
2

)

|V1(a/q + β) · · ·V5(a/q + β)|dβ

≪
(

L

q

)
5
2 ∫ 1

2

Q

qL

(1 + L|β|)− 5
2 dβ ≪ L

3
2

q
5
2

·
(

Q

q

)− 3
2

≪ (L/Q)
3
2

q
.

Taking this into (26), we get

RM(L) =
∑

q≤Q

∑

1≤a≤q

(a,q)=1

∫ a
q
+ 1

2

a
q
− 1

2

V1(α)V2(α) · · ·V5(α)e(−αL)dα + O(L3/2−ǫ)

= S(L; Q)J(L) + O(L
3
2
−ǫ), (27)

where

S(L; Q) =
∑

q≤Q

q−5
∑

1≤a≤q

(a,q)=1

(

5
∏

j=1

Sj(q, a)

)

e
(

− aL

q

)

is the partial singular series and

J(L) =
∫ 1

2

− 1
2

u1(β) · · ·u5(β)e(−βL)dβ

is the singular integral. From (19), we see that

J(L) =
1

32
(a1 · · · a5)

− 1
2

∑

ajdj
2L<mj≤ajDj

2L

m1+···+m5=L

1√
m1 · · ·m5

≥ c1L
3
2 (28)

for a positive constant c1 (depending on aj’s, dj’s and Dj’s only). 6

As to the singular series, from the fact that Sj(q, a)≪ √q, we have

S(L; Q) = S(L) + O(Q− 1
2 ),

where

S(L) :=
∞
∑

q=1

q−5
∑

1≤a≤q

(a,q)=1

(

5
∏

j=1

Sj(q, a)

)

e
(

− aL

q

)

.

From the definition of γ in [8] on page 168, the assumption in the proposition,
and Lemma 7.9 in [8], we have

S(L) > D > 0

6 It is clear that J(L) actually has an asymptotic formula.
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for some constant D. This, along with (21), (22), (27) and (28), gives the
desired result.
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[9] Lepović, M., Gutman, I., A collective property of trees and chemical trees, J.

Chem. Inf. Comput. Sci. 38 (1998), 823–826.

[10] Li, X., Wang, L., Solutions for two conjectures on the inverse problem of the
Wiener index of peptoids, SIAM J. Discrete Math. 17 (2003), No. 2, 210–218.
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