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Abstract. Let z(G) be the number of matchings (independent edge subsets) of a graph G. For
a set M of edges and/or vertices, the ratio rG(M) = z(G \ M)/z(G) represents the probability

that a randomly picked matching of G does not contain an edge or cover a vertex that is an
element of M . We provide estimates for the quotient rG(A ∪ B)/(rG(A)rG(B)), depending on
the sizes of the disjoint sets A and B, their distance and the maximum degree of the underlying
graph G. It turns out that this ratio approaches 1 as the distance of A and B tends to ∞,

provided that the size of A and B and the maximum degree are bounded, showing asymptotic
independence. We also provide an application of this theorem to an asymptotic enumeration
problem related to the dimer-monomer model from statistical physics.

1. Introduction and statement of results

The number of matchings (also known as independent edge subsets) of a (finite, simple) graph
G, henceforth denoted by z(G), is a parameter that is of relevance, among others, in statistical
physics (so-called dimer-monomer model, cf. [5, 8, 9] and other references provided in [3]) and
combinatorial chemistry (there, z(G) is known as Hosoya-index of a graph, cf. [7, 10, 11, 17]; more
generally, the matching polynomial of a graph is of interest, see [6]). Therefore, the enumeration of
matchings has already been investigated for various classes of graphs, most notably trees, hexagonal
chains, grid graphs, random graphs and self-similar graphs [2, 3, 12, 13, 14, 16, 18]. In [16], the
authors of this short note observed an independence phenomenon for a very particular sequence
of graphs. Even though not explicitly stated in this way, a similar observation has been made by
Chang and Chen in [3]. Roughly stated, it was proved in both instances that the ratio

z(Gn \ {vn, wm})z(Gn)

z(Gn \ vn)z(Gn \ wm)
=

z(Gn\{vn,wm})
z(Gn)

z(Gn\vn)
z(Gn) · z(Gn\wn)

z(Gn)

tended to 1 as the distance of two specific vertices vn, wn ∈ Gn tended to ∞ for a certain sequence
(Gn)n≥1 of graphs. Intuitively, this statement means that the influences of two vertices on the
number of matchings are asymptotically independent if the distance between them is large.

The aim of this note is to show that this behavior does not depend on the actual structure of
the graphs and that the statement can even be generalized to sets of vertices and/or edges in place
of single vertices. For an arbitrary subset A (of vertices and/or edges), the ratio z(G \ A)/z(G),
i.e. the probability that a randomly selected matching does not contain an edge in A or cover a
vertex in A, is denoted by rG(A). We are able to give an upper and lower estimate for the quotient

qG(A,B) :=
rG(A ∪ B)

rG(A)rG(B)
=

rG\A(B)

rG(B)
=

z(G \ (A ∪ B))z(G)

z(G \ A)z(G \ B)

and prove that it tends to 1 at an exponential rate as the distance d(A,B) goes to ∞, provided
that the sizes of A and B and the maximum degree of G are bounded. Finally, we show how our
theorem (which might look somewhat contrived at first sight) can be applied in the context of
enumeration problems such as those treated in [3]. The quantity qG(A,B) can be interpreted in
the following two ways:
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• It can be seen as the correlation coefficient of the two events “a randomly selected matching
does not intersect A” and “a randomly selected matching does not intersect B”.

• It relates the probability of the event “a randomly selected matching does not intersect B”
in the graph G to the probability of the same event in the graph G \ A.

Our main theorem reads as follows:

Theorem 1. Let G be a graph and A,B be two disjoint sets of vertices. There are positive constants
C and D, D < 1, which depend only on the maximum degree ∆ = ∆(G) of G and the sizes a = |A|
and b = |B|, such that the inequality

1

1 + C Dd−1
≤ qG(A,B) ≤ 1 + C Dd−1

holds, where d = d(A,B) denotes the distance of A and B. Furthermore, C and D can be chosen
as

C = (1 + ∆)min{a,b}

and
D = 1 − C−1.

It is not too difficult to draw the following corollaries from this theorem:

Corollary 2. Let G be a graph and A1, A2, . . . , Ak be disjoint sets of vertices. Then there are
positive constants C and D, D < 1, which depend only on the maximum degree ∆ = ∆(G) of G
and the sizes of the Ai such that

(1 + C Dd−1)1−k ≤ rG

(
⋃k

i=1 Ai

)

∏k

i=1 rG(Ai)
≤ (1 + C Dd−1)k−1

holds, where d = mini,j d(Ai, Aj) is the minimal distance between two sets from our collection. C
and D can be taken as

C = (1 + ∆)maxi|Ai|

and
D = 1 − C−1.

Corollary 3. Let G be a graph and A,B be two disjoint sets of vertices and/or edges such that
d(A,B) ≥ 1. Then the inequality

1

(1 + C Dd−1)4
≤ qG(A,B) ≤ (1 + C Dd−1)4

holds, where d = d(A,B) and C,D can be taken as in Theorem 1.

Of course, it is also possible to combine the two corollaries to obtain a statement for k disjoint
sets of vertices and/or edges.

2. Preliminaries

z(G) will always denote the number of matchings (independent edge subsets, i.e. edge sets
with the property that no two edges from the set share a common vertex) of a finite, simple
graph G, where the empty set is counted as a matching, even if G is potentially an empty graph.
Therefore, z(G) is always positive.

Some simple properties of z(G) will be exploited in our proofs, which shall be stated in this
section. For completeness, we will provide short proofs for these auxiliary tools as well. First of all,
let us state a trivial inequality that will be used throughout the paper without further reference:

Lemma 4. If H is a subgraph of G (not necessarily induced), then

z(H) ≤ z(G),

with equality if and only if G can be written as H ∪ {v1, v2, . . . , vk}, where v1, . . . , vk are isolated
vertices.
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Proof. Simply note that any matching in H is also a matching in G. Equality can only hold if H
has the same set of edges as G (otherwise, there is at least one matching comprising of a single
edge that belongs to G, but not to H). �

Furthermore, we will use two simple reduction techniques: reduction with respect to vertices
and reduction with respect to edges. These are generalizations of the well-known formulæ (cf. [7])

z(G) = z(G \ v) +
∑

w∼v

z(G \ {v, w})

(for arbitrary vertices v ∈ V (G)) and

z(G) = z(G \ e) + z(G \ {v, w})
(for arbitrary edges e = (v, w)) and can be deduced from them, but they can also be proved directly
without deeper insight:

Lemma 5. Let G be a graph and A ⊆ V (G) an arbitrary set of vertices. Let N = NG[A] be the
neighborhood of A in G, including A itself (i.e. the set of all vertices v such that the distance
d(v,A) is ≤ 1). Furthermore, let MG(A) denote the collection of all matchings M (including the
empty set) of the induced subgraph G[N ] with the property that none of the edges included in M
connects two vertices in N \ A. Finally, for M ∈ MG(A), let U(M) be the set of all endpoints of
edges in M . Then we have

z(G) =
∑

M∈MG(A)

z(G \ (A ∪ U(M))).

Proof. For every M1 ∈ MG(A) and every matching M2 of G\(A∪U(M1)), the union M = M1∪M2

is a matching of G (note that the edges in M1 and the edges in M2 cannot have any common vertices,
since all endpoints of edges in M1 lie in U(M1)). Conversely, every matching M of G can be split
into a matching M1 ∈ MG(A) (that contains all the edges with endpoints in A) and a matching
M2 of G \ (A ∪ U(M1)). This readily proves the lemma. �

Lemma 6. Let G be a graph and A ⊆ E(G) an arbitrary set of edges. Let I(A) be the collection
of all independent subsets of A, and for M ∈ I(A), define U(M) as in Lemma 5. Then we have

z(G) =
∑

M∈I(A)

z(G \ (A ∪ U(M))).

Proof. As in the previous proof, every matching M of G can be decomposed into an independent
subset M1 = A ∩ M of M and a matching M2 of G \ (A ∪ U(M1)) and vice versa, which proves
the lemma. �

3. Proof of Theorem 1

The main theorem is proved by means of induction on the distance d. First of all, we determine
an upper and a lower bound that do not depend on the distance. Applying Lemma 5 to A yields

qG(A,B) =
z(G \ (A ∪ B))z(G)

z(G \ A)z(G \ B)
≤ z(G)

z(G \ A)
=

∑

M∈MG(A)

z(G \ (A ∪ U(M)))

z(G \ A)
≤ |MG(A)|.

We have |MG(A)| ≤ (∆ + 1)a, since every element M of MG(A) either contains one of the at
most ∆ edges incident with any vertex v ∈ A or none of these edges (and no edges which are not
incident with a vertex in A at all). Hence,

qG(A,B) ≤ (∆ + 1)a

and by symmetry

qG(A,B) ≤ (∆ + 1)min{a,b}.
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Note that this bound is even sharp, since G can be a disjoint union of stars K1,∆, where A is taken
as the set of all star centers and B as the set of all leaves. Likewise, we have

qG(A,B) ≥ z(G \ (A ∪ B))

z(G \ B)
=

z(G \ (A ∪ B))
∑

M∈MG\B(A) z(G \ (A ∪ B ∪ U(M)))

≥ |MG\B(A)|−1 ≥ |MG(A)|−1.

This readily proves the theorem in the case d = 1. For the induction step, we apply Lemma 5
again. Note that now d > 1, which means that vertices in A have no neighbors in B, thus implying
MG\B(A) = MG(A). Hence we obtain

(1) qG(A,B) =
z(G \ (A ∪ B))z(G)

z(G \ A)z(G \ B)
=

z(G \ (A ∪ B))
∑

M∈MG(A) z(G \ (A ∪ U(M)))

z(G \ A)
∑

M∈MG(A) z(G \ (A ∪ B ∪ U(M)))
.

If U(M) ⊆ A (which happens in at least one case, namely M = ∅), we have

z(G \ (A ∪ B ∪ U(M))) = z(G \ (A ∪ B)) and z(G \ (A ∪ U(M))) = z(G \ A).

Otherwise, note that |U(M) \ A| ≤ |A| = a for every M ∈ MG(A), since every edge of M
has at least one end in A. Furthermore, every vertex in U(M) \ A is a neighbor of A, so that
d(U(M), B) ≥ d(A,B)− 1 by the triangle inequality. Therefore, the induction hypothesis, applied
to the new graph H = G \ A, shows that

1

1 + C Dd−2
≤ qH(U(M) \ A,B) =

z(G \ (A ∪ B ∪ U(M)))z(G \ A)

z(G \ (A ∪ B))z(G \ (A ∪ U(M)))
≤ 1 + C Dd−2

for all M ∈ MG(A). These observations, together with (1), yield

qG(A,B) =

∑

M∈MG(A)
z(G\(A∪U(M)))

z(G\A)
∑

M∈MG(A)
z(G\(A∪B∪U(M)))

z(G\(A∪B))

=
1 +

∑

M∈MG(A),M 6=∅
z(G\(A∪U(M)))

z(G\A)

1 +
∑

M∈MG(A),M 6=∅
z(G\(A∪B∪U(M)))

z(G\(A∪B))

≥
1 +

∑

M∈MG(A),M 6=∅
z(G\(A∪U(M)))

z(G\A)

1 + (1 + C Dd−2) ·∑M∈MG(A),M 6=∅
z(G\(A∪U(M)))

z(G\A)

≥ |MG(A)|
1 + (1 + C Dd−2)(|MG(A)| − 1)

=
1

1 + CDd−2(1 − |MG(A)|−1)

and analogously

qG(A,B) ≥ 1

1 + CDd−2(1 − |MG(B)|−1)
.

Furthermore, the same argument shows that

qG(A,B) ≤ |MG(A)|
1 + (1 + C Dd−2)−1(|MG(A)| − 1)

= 1 +
CDd−2(|MG(A)| − 1)

CDd−2 + |MG(A)| ≤ 1 + CDd−2(1 − |MG(A)|−1)

and

qG(A,B) ≤ |MG(B)|
1 + (1 + C Dd−2)−1(|MG(B)| − 1)

≤ 1 + CDd−2(1 − |MG(B)|−1).

Thus the induction is complete once we have D ≥ 1 − min{|MG(A)|, |MG(B)|}−1, which holds
for the given choice of D = 1 − (1 + ∆)−min{a,b}, since

min{|MG(A)|, |MG(B)|} ≤ (1 + ∆)min{a,b}

as before. �
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4. Proofs of the Corollaries

This section is devoted to the proofs of the two corollaries that follow immediately from our
main result. The first part is very easy: for a proof of Corollary 2, simply note that

rG

(
⋃k

i=1 Ai

)

∏k

i=1 rG(Ai)
=

k−1
∏

j=1

rG

(
⋃j+1

i=1 Ai

)

rG

(
⋃j

i=1 Ai

)

rG(Aj+1)
=

k−1
∏

j=1

qG

(

j
⋃

i=1

Ai, Aj+1

)

and that d
(
⋃j

i=1 Ai, Aj+1

)

≥ minr,s d(Ar, As). �

The proof of Corollary 3 is more intricate and involves an application of Lemma 6. Decompose
A and B into sets VA, VB of vertices and sets EA, EB of edges. Without loss of generality, we may
assume that no edge of EA (EB) has an endpoint in VA (VB , respectively). Now Lemma 6 yields

qG(A,B) =
z(G \ (VA ∪ VB ∪ EA ∪ EB))z(G)

z(G \ (VB ∪ EB))z(G \ (VA ∪ EA))

=
z(G \ (VA ∪ VB ∪ EA ∪ EB))

∑

M1∈I(EA) z(G \ (VB ∪ EB ∪ EA ∪ U(M1)))

×
∑

M1∈I(EA)

∑

M2∈I(EB) z(G \ (EA ∪ EB ∪ U(M1) ∪ U(M2)))
∑

M2∈I(EB) z(G \ (VA ∪ EA ∪ EB ∪ U(M2)))
.

Setting H := G \ (EA ∪ EB), this can be written as

qG(A,B) =

∑

M1∈I(EA)

∑

M2∈I(EB) z(H \ (VA ∪ VB))z(H \ (U(M1) ∪ U(M2)))
∑

M1∈I(EA)

∑

M2∈I(EB) z(H \ (VB ∪ U(M1)))z(H \ (VA ∪ U(M2)))
.

Obviously, this can be estimated above by

max
M1∈I(EA)
M2∈I(EB)

z(H \ (VA ∪ VB))z(H \ (U(M1) ∪ U(M2)))

z(H \ (VB ∪ U(M1)))z(H \ (VA ∪ U(M2)))

= max
M1∈I(EA)
M2∈I(EB)

qH(VA, VB)qH(U(M1), U(M2))

qH(VB , U(M1))qH(VA, U(M2))
≤ (1 + C Dd−1)4

and below by (1 + C Dd−1)−4 in an analogous way, just as claimed. �

5. An application to asymptotic enumeration

Chang and Chen [3] determined the asymptotics of the number of matchings in Sierpiński
graphs, i.e. the finite approximations of the Sierpiński gasket. The motivation for these investiga-
tions lies in the fact that the enumeration of matchings is equivalent to the dimer-monomer model
from statistical physics: dimers correspond to the matching edges, whereas monomers correspond
to uncovered vertices. Their approach uses recurrence relations that can be deduced from the in-
ductive construction of the finite Sierpiński graphs—the graph Gn+1 is obtained by amalgamating
three copies of Gn (see Figure 1).

G0

G1

G2

Figure 1. Steps in the construction of finite Sierpiński graphs.
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A general setting for enumeration problems of this type has been provided in [16], including
several examples of how the resulting recurrences can be treated. In the present case, one has to
define a few auxiliary quantities: if v1,n, v2,n, v3,n are the corner vertices of Gn, we let

• an be the number of matchings of Gn with no edge incident to v1,n, v2,n or v3,n,
• bn be the number of matchings of Gn with no edge incident to v1,n or v2,n, but with an

edge incident to v3,n,
• cn be the number of matchings of Gn with no edge incident to v1,n, but with edges incident

to v2,n and v3,n,
• dn be the number of matchings of Gn with edges incident to v1,n, v2,n and v3,n.

Obviously, bn and cn have three equivalent definitions for reasons of symmetry, and it follows that

z(Gn) = an + 3bn + 3cn + dn.

All these quantities can be written in terms of z(·) by means of the inclusion-exclusion-principle,
e.g.

cn = z(Gn \ {v1,n}) − z(Gn \ {v1,n ∪ v2,n}) − z(Gn \ {v1,n ∪ v3,n}) + z(Gn \ {v1,n ∪ v2,n ∪ v3,n}).
The construction of Gn+1 from Gn implies the following recurrence equations, which are given in
[3]:

an+1 = a3
n + 6a2

nbn + 3a2
ncn + 9anb2

n + 2b3
n + 6anbncn,

bn+1 = a2
nbn + 2a2

ncn + 4anb2
n + a2

ndn + 8anbncn + 3b3
n + 2anbndn + 2anc2

n + 4b2
ncn,

cn+1 = anb2
n + 4anbncn + 2b3

n + 2anbndn + 7b2
ncn + 3anc2

n + 2ancndn + 2b2
ndn + 4bnc2

n,

dn+1 = b3
n + 6b2

ncn + 3b2
ndn + 9bnc2

n + 2c3
n + 6bncndn.

Now let us introduce three further quantities, namely

wn =
bn

an

, xn =
cn

bn

, and yn =
dn

cn

.

A main step in the derivation of the asymptotics of an, bn, cn, dn and finally z(Gn) is to show that
wn, xn, yn tend to a common limit as n → ∞. The proof given by Chang and Chen involves rather
tedious calculations, which can be shortened considerably by means of our main theorem. Define
Rn by

Rn = rGn
({vi,n}) =

z(Gn \ {vi,n})
z(Gn)

.

for i ∈ {1, 2, 3} (note that the value does not depend on i). Then Corollary 2 shows that

z(Gn \ {vi,n, vj,n}) = z(Gn)(R2
n + O(D2n

))

for some absolute positive constant D < 1 and i, j ∈ {1, 2, 3}, since the distance between vi,n and
vj,n is 2n. Similarly,

z(Gn \ {v1,n, v2,n, v3,n}) = z(Gn)(R3
n + O(D2n

)).

It follows that

wn =
z(Gn)(R2

n − R3
n + O(D2n

))

z(Gn)(R3
n + O(D2n))

= R−1
n − 1 + O(D2n

)

and similarly

xn = R−1
n − 1 + O(D2n

) = wn + O(D2n

) and yn = R−1
n − 1 + O(D2n

) = wn + O(D2n

).

It remains to show that these quantities tend to a limit. But plugging these formulæ for wn, xn, yn

into the recurrence equations yields

an+1 = a3
n(1 + 6wn + 12w2

n + 8w3
n + O(D2n

))

and
bn+1 = a3

n(wn + 6w2
n + 12w3

n + 8w4
n + O(D2n

)),

so that wn+1 = wn + O(D2n

), which shows that wn (and thus xn and yn) converge to a limit W ,
and wn = W + O(D2n

). So finally

an+1 = a3
n(1 + 6W + 12W 2 + 8W 3 + O(D2n

)),
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and taking logarithms yields

log an+1 = 3 log an + K + O(D2n

)

for some constant K = log(1 + 6W + 12W 2 + 8W 3). Writing cn for the error term and iterating
this recursion (cf. [1]), we find

log an = 3n log a0 +
3n − 1

2
K +

n−1
∑

k=0

3n−k−1ck

= 3n

(

log a0 +
K

2
+

∞
∑

k=0

3−k−1ck

)

− K

2
−

∞
∑

k=n

3n−k−1ck

= A · 3n + B + O(D2n

)

for constants A and B = −K/2, and therefore

an = β · α3n(

1 + O(D2n

)
)

with α = eA and β = eB . The quantities bn, cn and dn satisfy analogous asymptotic equations,
and since z(Gn) = an + 3bn + 3cn + dn, we can conclude with the following theorem:

Theorem 7. The number of matchings in the finite Sierpiński graph Gn of level n is (asymptoti-
cally)

z(Gn) = γ · α3n(

1 + O(D2n

)
)

for positive constants α and γ.

Numerical values for α and γ are given by

α = 2.676316356977

and

γ = 1.427712384869.

The value of the “growth constant”

lim
n→∞

log z(Gn)

|V (Gn)| = 2
3 log α = 0.2850249655977

has already been provided by Chang and Chen in [3]. Of course, our method is not restricted to
this special case and can be used for generalized Sierpiński graphs in higher dimensions and with
more subdivisions. Some examples for this generalization have already been discussed by Chang
and Chen as well.

6. Further remarks

Lots of open questions remain. For instance, it is natural to ask whether similar estimates
can be given for other graph parameters (in special cases, we have already observed a similar
behavior for the number of independent vertex subsets and for the number of maximal matchings
in [16]). Since Corollary 2 and thus also Theorem 1 play the key role in the asymptotic enumeration
problem considered in Section 5, we expect a similar benefit for problems involving other graph
parameters. Thus we believe it might be worthwhile to study our independence phenomenon from
a more general point of view.

Furthermore, the constants provided in Theorem 1 are most probably not best-possible, and
there should be a lot of space for improvement, bearing in mind that the estimates in the proofs
are rather crude. It is also not clear whether the dependence on the maximum degree of G is
actually necessary, and it might be possible to drop it.

We also conjecture the following bounds for qG(A,B) that neither depend on ∆ nor on the
distance d(A,B):
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Conjecture 1. For an arbitrary graph G and vertex subsets A,B of G with a = |A| and b = |B|,
we have

z(Kc,a+b)

z(Kc,a)z(Kc,b)
≤ qG(A,B) ≤ z(Ka,b),

where c = ⌊a+b+2
2 ⌋, unless a = b = 1 or a = b = 2. In these two cases, c = 1 and c = 2

respectively. Equality occurs for the left hand side inequality if and only if G is the complete
bipartite graph Kc,a+b, with bipartition (C,A ∪ B), and on the right hand side if and only if G is
the complete bipartite graph Ka,b with bipartition (A,B).

Finally, let us mention that there are interesting instances where the quotient qGn
(An, Bn)

tends to 1 for certain sequences (Gn)n≥1, (An)n≥1, (Bn)n≥1 even though the distance is bounded,
and we will exhibit such an example below. On the other hand, this condition cannot be dropped,
as the following simple example shows:

Let Gn = P2n be a path on 2n vertices, and let vn, wn be the two middle vertices, i.e. those
with largest distance from the leaves. It is well-known and easy to prove that z(Pm) = Fm+1 is a
Fibonacci number. Hence we have

zGn
({vn}, {wn}) =

z(Gn \ {vn, wn})z(Gn)

z(Gn \ {vn})z(Gn \ {wn})

=
z(Pn−1)

2z(P2n)

(z(Pn)z(Pn−1))2
=

F 2
nF2n+1

F 2
n+1F

2
n

=
F2n+1

F 2
n+1

,

which tends to 5−
√

5
2 6= 1. On the other hand, if we take Gn = Kn, then we obtain

qGn
({vn}, {wn}) =

z(Kn)z(Kn−2)

z(Kn−1)2

for arbitrary distinct vertices vn, wn ∈ Gn. The asymptotics of z(Kn) have been given in [4], albeit
in a different context (z(Kn) is also, among others, the number of involutions, i.e. permutations
of order 2; see [15], A000085): one has

z(Kn) ∼ exp

(

n log n

2
− n

2
+
√

n − 1

4
− log 2

2

)

,

which shows that
qGn

({vn}, {wn}) → 1

as n → ∞.

Finally, let us mention a question stemming from the observation that finite Sierpiński graphs
can be seen as induced subgraphs of an infinite graph: under which circumstances is it true that

lim
n→∞

log z(Gn)

|V (Gn)| ,

where Gn is an (appropriate) increasing sequence of induced finite subgraphs of a locally finite
graph G, is independent of the sequence Gn (i.e., depends only on G)?
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