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Abstract

This note deals with a formula due to G. Labelle for the summed cycle indices
of all rooted trees, which resembles the well-known formula for the cycle index of
the symmetric group in some way. An elementary proof is provided as well as
some immediate corollaries and applications, in particular a new application to
the enumeration of k-decomposable trees. A tree is called k-decomposable in this
context if it has a spanning forest whose components are all of size k.

1 Introduction

Pélya’s enumeration method is widely used for graph enumeration problems — we refer to
[6] and the references therein for instance. For the application of this method, information
on the cycle indices of certain groups is needed — mostly, these are comparatively simple
examples, such as the cyclic group, the dihedral group or the symmetric group. A very
well-known formula gives the cycle index of the symmetric group S,, (we adopt the notation

from [6] here):
Z(8y) = > 11 ;gj:]kl (1)

One has . .
n Sk k
Z(Sp)t" = ex —t",

an identity which is of importance in various tree counting problems (cf. again [6]).
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In the past, several tree counting problems related to the automorphism groups of
trees have been investigated. We state, for instance, the enumeration of identity trees
(see [7]), and the question of determining the average size of the automorphism group in
certain classes of trees (see [9, 10]).

Therefore, it is not surprising that so-called cycle index series or indicatriz series [2, 8]
are of interest in enumeration problems. Given a combinatorial species F', the indicatrix
series is given by

51 85785 ..

' 10101!20262!36303! c

I

ZF(Sla 52y . ) - Z fC1702,63,..

c1+2co+3c3+...<00

where f;, ¢,.cs,... denotes the number of F-structures on n = ¢; + 2¢3 + 3c3 + ... points
which are invariant under the action of any (given) permutation o of these n points with
cycle type (ci,co,...) (i.e. exactly ¢ cycles of length k). See for instance [2, 6, 8] and
the references therein for more information on cycle index series. Equivalently, it can be

defined via
1
Zp(s1,82,...) = g o < E fix Flo|z]' x5 a5? .. ) :

n>0 0ESRH

where fix F[o] is the number of F-structures for which the permutation o is an automor-
phism and (o1, 09,...) is the cycle type of o [2].

In this note, we deal with the special family 7 of rooted trees. Yet another reformu-
lation shows that the cycle index series is also

S Z(Au(T),

where Z(Aut(T")) is the cycle index of the automorphism group of 7. The following
formula for the cycle index series is due to G. Labelle [8, Corollary A2]:

Theorem 1 The cycle index series for rooted trees is given by
c;i—1

—1
ZT(Sl, S9, .. ) = Z Z ?6118? H C"l’ici chj Z jcj 5161
v jli

c
c1>0 c2,¢3,...>0 >l i gli,g#Ai

Note that the expression resembles (1), though it is somewhat longer. This result seems
to be not too well-known, but it certainly deserves attention. In [8], Labelle proves it in
a more general setting, using a multidimensional version of Lagrange’s inversion formula
due to Good [4]. On the other hand, Constantineau and J. Labelle provide a combinatorial
proof in [3].

First of all, we will give a simple proof (though, of course, less general than Labelle’s)
for this formula, for which only the classical single-variable form of Lagrange inversion will
be necessary; then, some immediate corrolaries are stated. Finally, the use of the cycle
index series is demonstrated by applying the formula to the enumeration of weighted trees
and k-decomposable trees.
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2 Proof of the main theorem

By the recursive structure of rooted trees and the multiplicative properties of the cycle
index, it is not difficult to see that Z = Z7(s1, s9, .. .) satisfies the relation

1
Z = $1exp (Z —Zm> ,
m

m>1

which is given, for instance, in a paper of Robinson [12, p. 344] and the book of Bergeron
et al. [2, p. 167]. Here, Z,, is obtained from Z by replacing every s; with s,,;. Now, we
prove the following by induction on k:

& ci—1
c1—1 _c1
7 ;s 1 . .
= | e JC; JCi | Si
cy! -~ Gl . o
C15005C >0 i=2 Jjli Jlig#i
c1>0
1
exp E — E deqg | Zom,
m
m>k dlm,d<k

in the ring of formal power series. Then, for finite k, the coefficient of si'...s* follows

at once, since >, + (Zd\m,dgk dcd) Zm doesn’t contain the variables sq, . . ., .

First note that, by Lagrange’s inversion formula (cf. [5, 6]), we have

and

if w = xe™. This yields

Z = 81 €exp (Z + Z %Zm> = Z Cicl_'ls‘fl exp (Z %Zm> ,

m>2 a>1 b m>2

which is exactly the desired formula for £ = 1. For the induction step, we note that

1
Z; = s;exp (Z EZml>

m>1
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and thus, by the induction hypothesis,

ci—1
c1—1 _c1 k—1 1

4= Z - 01!81 H c;lici chj Z jej | s

Cly0sC—12>0 1=2 gl Jlig#s
c1>0
1 1
exp | — E deg Zk+§ — g deg | Zm
k m
d|k,dsk m>k dlm,d<k
ol c;i—1
PRI | I D oY > g | s
= — JC; Jci | s
a!  tLelie \ &7 L T
ClyeesCl—1>0 =2 jli Jli,g#e
c1>0
cp—1
S| Zae) ety ) a
Jjc; L+ — Jjc; S
Ck'/{? = I k: . ! F
x>0 jlk,j#k Jlk.j#k
k?Ck 1
exp — 1 | exp E — g deqg | Zm
kl m
>1 m>k dlm,d<k
& ci—1
O S oF > ey | st
al ALl | &= L
C15005C >0 i=2 Jjli Jlig#s
c1>0
1
exp g — E deqg | Zo,
m
m>k dim,d<k
This finishes the induction. [ |

Corollary 2 The number t, = |7,| of rooted trees on n vertices is given by

i—1
ot 1 )
1 . .
e Y S (Se) (Z
c14+2co+...=n o1 Y gli Gli 574
c1>0
Proof: Simply set s; = sy = ... =1 in the identity
c;i—1
1 lg 1
1 1 : : i
> ziawm) = 3 Sl (e | X e
TET, e1t2ent.=n sy i g
el

As a second corollary, we obtain Cayley’s formula for the number of rooted labeled
trees.
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Corollary 3 The number of rooted labeled trees on n vertices is given by n™ .

Proof: Note that the coefficient of s} in the cycle index of a rooted tree 7" on n vertices
is precisely | Aut(T)|~!. Thus, we have

3 [ Aue(T) ="

TeT,

n—1

n!

But % is exactly the number of different labelings of T', which finishes the proof. m

3 Further applications

Theorem 1 can also be applied to a general class of enumeration problems: let a set B
of combinatorial objects with an additive weight be given, and let B(z) be its counting
series. Now, if we want to enumerate trees on n vertices, where an element of B is assigned
to every vertex of the tree, the counting series is given by

ci—1
Cl—l 1

> B [ e | X > dey | B

c1+2c2+...=n i>1 jli jliyji
c1>0

The coefficient of z equals the total weight. For example, the counting series for rooted
weighted trees on n vertices (i.e. each vertex is assigned a positive integer weight, cf.
Harary and Prins [7]) is given by

c;i—1
Cil_l > C1 1 ] ] zz Cj
W(z) = E | | , E Je; E Je; 4 )
¢! 1—2 c;lici 11—zt
ert2ert . =n i>1 il iligti
c1

The first few instances are

en=1 Wk =2 =z+22+22+..,

1—2

e n=2 W(z)= (1i)2 =22 4+2234324 + ..,

e n=23: W(z):%:223+5z4+1025+....

Finally, we are going to consider a new application of Theorem 1. This example deals with
the decomposability of trees: we call a tree k-decomposable (a special case of the general
concept of A-decomposability, see [1, 16]) if it has a spanning forest whose components
are all of size k. It has been shown by Zelinka [17] that such a decomposition, if it
exists, is always unique. The special case k = 2, which has already been investigated
by Moon [11] and Simion [13, 14], corresponds to perfect matchings. Now, let D(z)
denote the generating function for the number of k-decomposable rooted trees. Since a
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decomposable rooted tree is made up from a rooted tree on k vertices (the component
containing the root) and collections of k-decomposable rooted trees attached to each of
these k vertices, we obtain the following functional equation for k-decomposable trees:

c;i—1
c1—1 1

D)= 3 LB [ o | e > e | B,

c1+2co+...=k >1 _]|Z ]\z,];éz
c1>0

where E(z) = zexp (3,5, =D(z™)). For k = 2, we obtain

D(z) = 2% exp (Z %D(xm)> :

giving the known counting series for trees with a perfect matching (Sloane’s A000151 [15],
see also [11, 13, 14]):

D(x) = 2 + 22" + 72°% + 262° + 107" + 4582 + ...
For k = 3, to give a new example, we have
D) = e (3206 ) + Lo [ 3L (D) + D)
T) = —ex —D(x —ex — x x
2 ! m>1 m 2 b m>1 m ’

yielding
D(x) = 22° + 102° + 842" + 78822 + ...

Of course, it is possible to calculate the counting series of k-decomposable rooted trees for
arbitrary k in this way. The functional equation can also be used to obtain information
about the asymptotic behavior (cf. [6, 16]).
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