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Abstract

We characterize the trees T with n vertices whose Hosoya index (total number of

matchings) is Z(T ) > 16fn−5 resp. the trees whose Merrifield-Simmons index (total

number of independent subsets) is σ(T ) < 18fn−5 + 21fn−6, where fk is the k-

th Fibonacci number. It turns out that all the trees satisfying the inequality are

tripodes (trees with exactly three leaves) and the path in both cases. Furthermore,

we show that the remarkable correspondence Z(T )+σ(T ) = fn+3 holds for all these

trees. These results are achieved by modifying and enhancing methods due to Li

and Zhao, who found the trees of second- and third-smallest Merrifield-Simmons

index.

1 Introduction

The Hosoya- or Z-index Z(G) and the Merrifield-Simmons- or σ-index σ(G) of a graph G

are two prominent examples of topological indices which are of interest in combinatorial

chemistry. They are defined as the number of matchings (independent edge subsets) resp.

number of independent vertex subsets of a graph.

The Z-index was introduced by Hosoya [5, 6] in 1971, and it turned out to be applicable
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to several questions of molecular chemistry. For example, the connections with physico-

chemical properties such as boiling point, entropy or heat of vaporization are well studied.

Similar connections are known for the σ-index, introduced by Merrifield and Simmons [11]

in 1989. For detailed information on the chemical applications, we refer to [4, 11, 13] and

the references therein.

Several papers deal with the characterization of the extremal graphs with respect to these

two indices in several given graph classes – usually, trees and certain structures involving

pentagonal and hexagonal cycles are of major interest [2, 7, 8, 9, 10, 15, 16]. It turns

out that typically the graphs of minimal Hosoya index coincide with those of maximal

Merrifield-Simmons index and vice versa. In view of the similar definitions, this might

not be too surprising; however, the correlations between these two indices are not fully

understood yet (cf. also [3, 14]).

Trees with maximal and minimal Merrifield-Simmons index were the topic of a paper of

Lin and Lin [10]; some of their results were rediscovered and extended by Gutman, Li and

Zhao [8, 9]. In particular, Li and Zhao characterize the trees of second- and third-smallest

σ-index in their paper [8] (the path has been proved to be the tree of minimal σ-index

before in [12]). In this paper, their approach is extended to a much larger range – it is

shown that a tree T with σ-index σ(T ) < 18fn−5 + 21fn−6 has at most three leaves; on

the other hand, σ(T ) < 18fn−5 + 21fn−6 holds for almost all tripodes (i.e. trees with

three leaves). Most results together with their proofs hold in almost literally the same

way for the Z-index. Finally, there is a remarkable correspondence between the Z-index

and σ-index of tripodes.

2 Preliminaries

In the following, G = (V (G), E(G)) denotes a graph with vertex set V (G) and edge set

E(G). All graphs considered here are finite and simple. For graph-theoretical terminology

and notation, we refer to [1].

We will mainly be concerned with trees, though some theorems are stated for more general

graphs. For a tree T and a vertex v of T , we call the components of T \ {v} the subtrees

of T at v.

We denote the sequence of Fibonacci numbers by fn, i.e. f0 = 0, f1 = 1 and fn+1 = fn +

fn−1. fn is extended to negative values of n via Binet’s formula fn = 1√
5

(
φn − (−φ)−n

)
,

where φ = 1+
√

5

2
. Analogously, the Lucas numbers are denoted by ln, i.e. l0 = 2, l1 = 1,

ln+1 = ln + ln−1 and ln = φn + (−φ)−n.



We will make use of the following two well-known lemmas on the Merrifield-Simmons

index and Hosoya index:

Lemma 1 Let G be a graph and v ∈ V (G), and let v1, . . . , vk be the neighbors of v.

Then we have

Z(G) = Z(G \ v) +
k∑

i=1

Z(G \ {v, vi})

and

σ(G) = σ(G \ v) + σ(G \ {v, v1, . . . , vk}).

If G is a graph whose connected components are G1, . . . , Gl, we have

Z(G) =
l∏

i=1

Z(Gi) and σ(G) =
l∏

i=1

σ(Gi).

Lemma 2 For a given number of vertices n, the tree of maximal Hosoya index and

minimal Merrifield-Simmons index is the path Pn. We have Z(Pn) = fn+1 and σ(Pn) =

fn+2.

Next, we define two special classes of trees that will be in the center of our interest.

Definition 1 We call a tree with only one vertex v of degree d > 2 a d-pode. In particular,

we use the term tripode for 3-podes. v is called the center. To each partition (c1, . . . , cd)

of n − 1, there is exacty one corresponding d-pode (s. Figure 1), which we denote by

R(c1, . . . , cd). Here, ci is the length of the i-th “ray” going out from the center.
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Figure 1: The d-pode R(c1, . . . , cd).

Definition 2 Let a, bij be positive integers with a + b11 + b12 + b21 + b22 = n. Then, the

n-vertex tree that is shown in Figure 2 is denoted by H(a, b11, b12, b21, b22). Here, a = 1

means that v1 and va coincide.

Remark: It is easy to see that every tree with 3 leaves is a tripode, and that every tree

with 4 leaves is of the form H(a, b11, b12, b21, b22).

Lemmas 1 and 2 can be used to give explicit formulas for the Hosoya- and Merrifield-

Simmons indices of these special trees:
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Figure 2: The tree H(a, b11, b12, b21, b22).

Proposition 3 The following formulas hold for all a, bij, ci ≥ 1:

Z(R(c1, . . . , cd)) =
d∏

i=1

fci+1 +
d∑

i=1

fci

d∏

j=1
j 6=i

fcj+1,

σ(R(c1, . . . , cd)) =
d∏

i=1

fci+2 +
d∏

i=1

fci+1.

and

Z(H(a, b11, b12, b21, b22)) =
∏

1≤i,j≤2

fbij+1 ·

(

fa−1

(

1 +
∑

1≤i,j≤2

fbij

fbij+1

+
∑

1≤i,j≤2

fb1i
fb2j

fb1i+1fb2j+1

)

+ fa−2

(

2 +
∑

1≤i,j≤2

fbij

fbij+1

)

+ fa−3

)

,

σ(H(a, b11, b12, b21, b22)) = fa

∏

1≤i,j≤2

fbij+2 + fa−1

(
∏

1≤i,j≤2

fbij+i +
∏

1≤i,j≤2

fbij+3−i

)

+ fa−2

∏

1≤i,j≤2

fbij+1.

Remark: From the explicit formulas, the recursions

Z(H(a, b11, b12, b21, b22)) = Z(H(a − 1, b11, b12, b21, b22)) + Z(H(a − 2, b11, b12, b21, b22)),

Z(H(a, b11, b12, b21, b22)) = Z(H(a, b11 − 1, b12, b21, b22)) + Z(H(a, b11 − 2, b12, b21, b22)),

σ(H(a, b11, b12, b21, b22)) = σ(H(a − 1, b11, b12, b21, b22)) + σ(H(a − 2, b11, b12, b21, b22)),

σ(H(a, b11, b12, b21, b22)) = σ(H(a, b11 − 1, b12, b21, b22)) + σ(H(a, b11 − 2, b12, b21, b22))

follow easily.

Corollary 4 The formulas

Z(R(c1, c2, c3)) =
1

5

(

fn+2 + 3fn+1 + (−1)c1fn−2c1−1 + (−1)c2fn−2c2−1 + (−1)c3fn−2c3−1

)



and

σ(R(c1, c2, c3)) =
1

5

(

4fn+2 + 2fn+1 − (−1)c1fn−2c1−1 − (−1)c2fn−2c2−1 − (−1)c3fn−2c3−1

)

hold for all c1, c2, c3 ≥ 1 with c1 + c2 + c3 + 1 = n. It follows that

Z(R(c1, c2, c3)) + σ(R(c1, c2, c3)) = fn+3.

Proof: From Binet’s formula, we easily obtain

fufvfw =
1

5

(

fu+v+w − (−1)uf−u+v+w − (−1)vfu−v+w − (−1)wfu+v−w

)

,

and the corollary follows upon some elementary simplifications. �

3 Auxiliary results

First, we need a lemma on graphs which are constructed by attaching an arbitrary graph

G to a path Pn. For the Merrifield-Simmons index, this lemma was given in [8], therefore,

we only state a proof for the Hosoya index:

Lemma 5 Let G 6≃ P1 be a connected graph and choose v ∈ V (G). P (n, k,G, v) then

denotes the graph that results from identifying v with the vertex vk of a simple path

v1, . . . , vn (Figure 3).

r r r r r r. . . . . .��
��G

v1 v = vk vn

Figure 3: The graph P (n, k,G, v).

Now, let n = 4m + i, i ∈ 1, 2, 3, 4, m ≥ 0. Then

Z(P (n, 2, G, v)) < Z(P (n, 4, G, v)) < . . . < Z(P (n, 2m + 2l, G, v)) <

Z(P (n, 2m + 1, G, v)) < . . . < Z(P (n, 3, G, v)) < Z(P (n, 1, G, v))

and

σ(P (n, 2, G, v)) > σ(P (n, 4, G, v)) > . . . > σ(P (n, 2m + 2l, G, v)) >

σ(P (n, 2m + 1, G, v)) > . . . > σ(P (n, 3, G, v)) > σ(P (n, 1, G, v)),

where l = ⌊ i−1

2
⌋.



Proof: Set A = Z(G) and B = Z(G \ {v}). Clearly, each matching of G \ {v} is also a

matching of G, but not vice versa, so A > B. A matching of P (n, k,G, v) has to satisfy

exactly one of the following conditions:

• it contains neither (vk−1, vk) nor (vk, vk+1). If these edges are removed, three sub-

graphs remain: G and two paths with k − 1 resp. n − k vertices. Therefore, there

are Z(G)Z(Pk−1)Z(Pn−k) = Afkfn−k+1 such matchings.

• it contains (vk−1, vk). Then it contains no other edge going out from vk−1 or vk.

Again, three subgraphs remain: G\{v} and two paths with k−2 resp. n−k vertices.

Therefore, there are Z(G \ {v})Z(Pk−2)Z(Pn−k) = Bfk−1fn−k+1 such matchings.

• it contains (vk, vk+1). Analogously, there are Bfkfn−k such matchings.

So we have

Z(G) = Afkfn−k+1 + Bfk−1fn−k+1 + Bfkfn−k

= B(fkfn−k+1 + fk−1fn−k+1 + fkfn−k) + (A − B)fkfn−k+1

= B(fk+1fn−k+1 + fkfn−k) + (A − B) · (ln+1 − (−1)kln−2k+1)/5

= Bfn+1 + (A − B)ln+1/5 − (A − B)(−1)kln−2k+1/5.

The only term depending on k is −(A−B)(−1)kln−2k+1/5. We may assume k ≤ (n+1)/2,

since P (n, k,G, v) ≃ P (n, n+1−k,G, v). So ln−2k+1 is always positive and monotonically

decreasing in k. The result follows immediately. �

Remark: The fact Z(P (n, k,G, v)) < Z(P (n, 1, G, v)) (1 < k < n) implies the following:

if two subtrees of a tree T at some vertex v are paths, the Hosoya index increases if

these subtrees are replaced by a single path starting in v and preserving the number

of vertices (s. Figure 4). Analogously, the Merrifield-Simmons index decreases by this

transformation.

v r r rr r r r
r����

HH
- r r r r r r

Figure 4: Transformation of subtrees I.

Lemma 6 Let T be a tree, v any vertex of T . Furthermore, let S be one of the subtrees

at v that contains more than one leaf. S can be replaced in such a way that the resulting

tree T ′ has exactly one leaf less than T and larger Z-index resp. smaller σ-index.



Proof: Let w be a vertex of degree ≥ 3 in S that has largest distance from v (such a

vertex exists, as S has more than one leaf). Then, by maximality, all subtrees of T at w

except the subtree containing v must be paths. If we replace two of them by a single path

preserving the number of vertices, the number of leaves decreases by 1, and the Z-index

increases by the previous remark, while the σ-index decreases. �

Corollary 7 If a subtree of a tree T at some vertex v is replaced by a path starting in v

(s. Figure 5), the Z-index increases, whereas the σ-index decreases.

v r r r
��
��

- r r · · · r

Figure 5: Transformation of subtrees II.

Proof: If a subtree is not a path, we may apply the previous lemma iteratively until the

subtree contains only one leaf. The Z-index increases with every step, and at the end,

the subtree must be a path. �

4 Main results

Theorem 8 For a given number n of vertices and given maximal degree d, the tree T

with maximal Z-index and minimal σ-index is






R(2, . . . , 2
︸ ︷︷ ︸

n−1−d

, 1, . . . , 1
︸ ︷︷ ︸

2d−n+1

) if d ≥ n−1

2
,

R(2, . . . , 2
︸ ︷︷ ︸

d−1

, n − 2d + 1) if d ≤ n−1

2
.

The Z-index of these trees is 2n−d−2(3d − n + 3) and 2d−2((d + 1)fn−2d+2 + 2fn−2d+1)

respectively, and the σ-index of these trees is
(

3

2

)n−1 (4

3

)d
+ 2n−d−1 and 3d−1fn−2d+3 +

2d−1fn−2d+2 respectively.

Proof: We only state the proof for the Z-index; the proof for the σ-index is completely

analogous. Let v be a vertex of maximal degree. If we replace all subtrees at v by paths,

the Z-index increases by Corollary 7. Therefore, the tree of maximal Z-index for given

maximal degree d is of the form R(c1, . . . , cd).

It is easy to see that R(c1, . . . , cd) ≃ P (ci + cj +1, ci +1, G, v) for all 1 ≤ i < j ≤ d, where

G ≃ R(c1, . . . , ci−1, ci+1, . . . , cj−1, cj+1, . . . , cn).



If (c1, . . . , cd) contains two elements ci, cj ≥ 3, the Z-index increases by Lemma 5 if they

are replaced by 2, ci + cj − 2. On the other hand, if it contains an element ci ≥ 3 and an

element 1, the Z-index increases by Lemma 5 if they are replaced by 2, ci − 1.

Therefore, Z(R(c1, . . . , cd)) is maximal if (c1, . . . , cd) either contains only 2’s and 1’s or

only one element 6= 2, which yields the stated result. The formulas follow easily from

Proposition 3. �

Now, we are going to characterize all trees T with n vertices whose Hosoya index is

Z(T ) > 16fn−5 resp. all trees whose Merrifield-Simmons index is σ(T ) < 18fn−5 +21fn−6.

Parts of the following results have already been given in the paper of Li and Zhao ([8])

for the σ-index. Therefore, all proofs are stated mainly for the Z-index; however, it is not

difficult to see that the proofs for the σ-index are completely analogous.

Lemma 9 If T is a tree with n ≥ 9 vertices and exactly four leaves, Z(T ) ≤ 16fn−5.

Equality occurs if either T ≃ H(2, n − 8, 2, 2, 2) or T ≃ H(n − 8, 2, 2, 2, 2). Furthermore,

σ(T ) ≤ 18fn−5 + 21fn−6, with equality if T ≃ H(2, n − 8, 2, 2, 2).

Proof: Again, we only give the proof for the Z-index. We proceed by induction on n.

For n = 9 and n = 10, the proof is easily done by direct computation. For n ≥ 11, we

consider two cases:

• max(b11, b12, b21, b22) ≥ 3. Without loss of generality, let b11 ≥ 3. From the remark

after Proposition 3, we know that

Z(H(a, b11, b12, b21, b22)) = Z(H(a, b11−1, b12, b21, b22))+Z(H(a, b11−2, b12, b21, b22)).

By the induction hypothesis, Z(H(a, b11, b12, b21, b22)) is maximal if

H(a, b11 − 1, b12, b21, b22) ≃ H(2, n − 9, 2, 2, 2) or H(n − 9, 2, 2, 2, 2)

and

H(a, b11 − 2, b12, b21, b22) ≃ H(2, n − 10, 2, 2, 2) or H(n − 10, 2, 2, 2, 2),

which happens if and only if a = 2, b11 = n − 8, b12 = b21 = b22 = 2.

• max(b11, b12, b21, b22) ≤ 2. Then b11+b12+b21+b22 ≤ 8, and as a+b11+b12+b21+b22 =

n ≥ 11, we must have a ≥ 3. By the remark after Proposition 3, the recursion

Z(H(a, b11, b12, b21, b22)) = Z(H(a−1, b11, b12, b21, b22))+Z(H(a−2, b11, b12, b21, b22))

holds. Again, Z(H(a, b11, b12, b21, b22)) is maximal if

H(a − 1, b11, b12, b21, b22) ≃ H(2, n − 9, 2, 2, 2) or H(n − 9, 2, 2, 2, 2)



and

H(a − 2, b11, b12, b21, b22) ≃ H(2, n − 10, 2, 2, 2) or H(n − 10, 2, 2, 2, 2),

which happens if and only if a = n − 8, b11 = b12 = b21 = b22 = 2.

Finally, Proposition 3 shows that

Z(H(n − 8, 2, 2, 2, 2)) = Z(H(2, n − 8, 2, 2, 2)) = 16fn−5

and

σ(H(2, n − 8, 2, 2, 2)) = 18fn−5 + 21fn−6.

This completes the proof. �

Remark: By Lemma 6, Z(T ) ≤ 16fn−5 even holds if T has at least four leaves, and

equality occurs if either T ≃ H(2, n− 8, 2, 2, 2) or T ≃ H(n− 8, 2, 2, 2, 2). The analogous

statement holds for the σ-index.

Theorem 10 We define a relation on the set of positive integers by

2 ⊲ 4 ⊲ 6 ⊲ . . . ⊲ 5 ⊲ 3 ⊲ 1.

This induces a lexicographic order on the set of triples (c1, c2, c3) with c1 ≤ c2 ≤ c3 and

c1 + c2 + c3 = n − 1 in the following way:

(2, 2, n − 5) ⊲ (2, 4, n − 7) ⊲ . . . ⊲ (2, 3, n − 6)

⊲ (4, 4, n − 9) ⊲ (4, 6, n − 11) ⊲ . . . ⊲ (4, 5, n − 10)

. . .

⊲ (3, 4, n − 8) ⊲ . . . ⊲ (3, 5, n − 9) ⊲ (3, 3, n − 7)

⊲ (1, 2, n − 4) ⊲ . . . ⊲ (1, 3, n − 5) ⊲ (1, 1, n − 3).

Using this order, we have, for n ≥ 13,

Z(R(1, 1, n − 3)) < Z(R(1, 3, n − 5)) < Z(H(2, n − 8, 2, 2, 2)) = Z(H(n − 8, 2, 2, 2, 2))

= 16fn−5 < Z(R(1, 5, n − 7)) < . . . < Z(R(2, 2, n − 5)) < Z(Pn)

and

σ(R(1, 1, n − 3)) > σ(R(1, 3, n − 5)) > σ(H(2, n − 8, 2, 2, 2)) = 18fn−5 + 21fn−6

> σ(R(1, 5, n − 7)) > . . . > σ(R(2, 2, n − 5)) > σ(Pn).

There are no further trees T with n vertices and 16fn−5 ≤ Z(T ) ≤ fn+1 or 18fn−5 +

21fn−6 ≥ σ(T ) ≥ fn+2.



Proof: By the remark after Lemma 9, all trees with at least four leaves have Z-index

≤ 16fn−5 = Z(H(2, n − 8, 2, 2, 2)) = Z(H(n − 8, 2, 2, 2, 2)). Thus, all n-vertex trees T

with 16fn−5 < Z(T ) < fn+1 are tripodes. An analogous statement holds for the σ-index,

so we only have to care about the order of tripodes with respect to the Z- and σ-index.

From Lemma 5, we already know that Z(R(a, 1, n − a − 2)) < Z(R(a, 3, n − a − 4)) <

. . . < Z(R(a, 4, n − a − 5)) < Z(R(a, 2, n − a − 3)) for all a. Therefore, it is sufficient to

prove the following:

• Z(R(2k−2, 2k−1, n−4k+2)) > Z(R(2k, 2k, n−4k−1)) for all 2 ≤ k ≤ (n−1)/6.

By Corollary 4, this is equivalent to

1

5

(

fn+2 + 3fn+1 + fn−4k+3 − fn−4k+1 + (−1)nf−n+8k−5

)

>
1

5

(

fn+2 + 3fn+1 + fn−4k−1 + fn−4k−1 − (−1)nf−n+8k+1

)

,

or

fn−4k + fn−4k−2 = fn−4k+3 − fn−4k+1 − 2fn−4k−1

> (−1)n−1(f−n+8k−5 + f−n+8k+1) = −fn−8k+5 − fn−8k−1.

We have n − 4k > n − 8k − 1 > 4k − n, as 2 ≤ k ≤ (n − 1)/6. Therefore,

fn−4k > f|n−8k−1| = |fn−8k−1|.

Similarly, n − 4k − 2 > n − 8k + 5 > −n + 4k + 2. Thus,

fn−4k−2 > f|n−8k+5| = |fn−8k+5|,

which proves the claim.

• Z(R(2k−1, 2k, n−4k)) < Z(R(2k+1, 2k+1, n−4k−3)) for all 1 ≤ k ≤ (n−4)/6.

By Corollary 4, this is equivalent to

1

5

(

fn+2 + 3fn+1 − fn−4k+1 + fn−4k−1 + (−1)nf−n+8k−1

)

<
1

5

(

fn+2 + 3fn+1 − fn−4k−3 − fn−4k−3 − (−1)nf−n+8k+5

)

,

or

fn−4k−2 + fn−4k−4 = fn−4k+1 − fn−4k−1 − 2fn−4k−3

> (−1)n(f−n+8k−1 + f−n+8k+5) = fn−8k+1 + fn−8k−5.

We have n − 4k − 2 > n − 8k + 1 > −n + 4k + 2, as 1 ≤ k ≤ (n − 4)/6. Therefore,

fn−4k−2 > f|n−8k+1| = |fn−8k+1|.



Similarly, n− 4k− 4 > n− 8k− 5 > −n + 4k + 4 if 1 ≤ k ≤ (n− 5)/6. In that case,

fn−4k−4 > f|n−8k−5| = |fn−8k−5|

and we are done. The only other case we have to consider is k = (n − 4)/6. In this

case, we are left with the inequality

f2k+2 + f2k > f−2k+5 + f−2k−1 = f2k−5 + f2k+1

(note that 2k + 1 has to be odd, so f−2k−1 = f2k+1 and f−2k+5 = f2k−5). By

the recursion for fn, this is equivalent to 5f2k−2 > 0, which is obviously true for

k = (n − 4)/6 > 1. �

• Finally, we have to show that

Z(R(c1, c2, c3)) >
1

5

(

fn+2 + 3fn+1

)

> Z(R(d1, d2, d3))

if c1 ≤ c2 ≤ c3, d1 ≤ d2 ≤ d3, c1 + c2 + c3 = d1 + d2 + d3 = n − 1, c1 even and d1

odd. By Corollary 4, the first inequality is equivalent to

(−1)c1fn−2c1−1 + (−1)c2fn−2c2−1 + (−1)c3fn−2c3−1 > 0.

c1 is even, so (−1)c1 = 1. c1 ≤ (n− 1)/3, so fn−2c1−1 > 0. If (−1)c2fn−2c2−1 < 0, we

must have c2 > c1. From c1 +1 ≤ c2 ≤ n− c1−2, we get n−2c1−3 ≥ n−2c2−1 ≥

3 + 2c1 − n. Thus

fn−2c1−3 ≥ f|n−2c2−1| = |fn−2c2−1|

and analogously fn−2c1−3 ≥ |fn−2c3−1| if (−1)c3fn−2c3−1 < 0. This yields

(−1)c1fn−2c1−1+(−1)c2fn−2c2−1+(−1)c3fn−2c3−1 ≥ fn−2c1−1−2fn−2c1−3 = fn−2c1−4 > 0,

as claimed. The second inequality is proved in an analogous manner. Finally, note

that

Z(H(2, n − 8, 2, 2, 2)) + σ(H(2, n − 8, 2, 2, 2)) = 16fn−5 + 18fn−5 + 21fn−6 = fn+3.

Furthermore, Z(R(1, 3, n − 5)) = 16fn−5 − fn−11 < 16fn−5 and Z(R(1, 5, n − 7)) =

16fn−5 + fn−12 > 16fn−5. Together with Corollary 4, this shows us that the order

with resprect to the σ-index has to be the same as the order with respect to the

Z-index. �

Remark: Theorem 10 also provides information on the trees of maximal Hosoya index

resp. minimal Merrifield-Simmons index for fixed diameter d ≥ 2n
3

– they are given by the

tripodes R(n−d−1, n−d−1, 2d−n+1) if n−d−1 is even and R(n−d−1, n−d, 2d−n)



otherwise.

Remark: Theorem 10 suggests that the orders induced by the Z- resp. σ-index on the

set of n-vertex trees are “almost the same”. Indeed, this is true for small values of n.

The first examples of two n-vertex trees T1, T2 with Z(T1) > Z(T2) and σ(T1) > σ(T2)

occur for n = 9 – Figure 6 shows two trees T1, T2 with Z(T1) = 31 > 30 = Z(T2) and

σ(T1) = 126 > 124 = σ(T2).
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Figure 6: Two trees T1, T2 with Z(T1) > Z(T2) and σ(T1) > σ(T2).
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