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Abstract

We study the set of integers with a given sum of digits with respect to a linear recurrent digit system.
An asymptotic formula for the number of integers < N with given sum of digits is determined,
and the distribution in residue classes is investigated, thus generalizing results due to Mauduit and
Sarkozy. It turns out that numbers with fixed sum of digits are uniformly distributed in residue
classes under some very general conditions. Namely, the underlying linear recurring sequence must
have the property that there is no prime factor P of the modulus such that all but finitely many
members of the sequence leave the same residue modulo P. The key step in the proof is an estimate

for exponential sums using known theorems from Diophantine approximation.
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1 Introduction and Notation

Linear recurrent digit systems are a generalization of the usual radix representations; they have been
studied, for example, in [3, 12, 14, 15, 21]. We start with a definition of these systems:

Let G = (G,) (n =0,1,...) be a linear recurring sequence of order d > 1, i.e.
Gn+d = alGn-i-d—l + a2Gn+d—2 +...+ adGn (1)

with integral coefficients and integral initial values. We assume that the coefficients a3 > a2 > ... > aq >

0 are non-increasing (a; > 1 if d = 1) and that Gy = 1 and
Gn>a1(G0+...+Gn_1), n=1,...,d—1.

For an arbitrary positive integer N, we define L = L(N) by Gy, < N < Gp41 (and set L(0) = 0).
Furthermore, set N, = N,

N
€; = \‘—]J , Nj—l = Nj —GjGj (1 S] < L)a

and finally ¢y = Ny, yielding a unique representation of N of the form

L(N

)
N = Z GjGj, (2)
3=0

the G-ary representation of NV with digits €;. If d = 1 and a; = g, we obtain the well-known base-g

representation of V.
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Now, the sum of digits is naturally defined as

L(N)

sq(N) = Z €.

j=0
The best-known instance of such a digit system is probably the Zeckendorf expansion [22], belonging to
the Fibonacci sequence Gg = 1, G1 = 2, Gpy2 = Gpy1 + Gy
In [21], Pethé and Tichy generalized a well-known result of Delange [5] on the mean value of the sum
of digits to linear recurring sequences. For usual base-g expansions, numbers with fixed sum of digits
were studied by Mauduit and Sarkézy in [19]. Their first main result states that the number of integers
with < v digits and sum of digits k < 92;1V (for reasons of symmetry, this case is obviously sufficient) is,

uniformly for k£ — oo,
rRA 4+ 9 2(Dr) V2 (1 + O(Dr) V2, (3)
where the implied constant depends only on the base g; r is defined as the unique positive zero of
Q)= —-k(l+a+...+29 H+va(l+22+...+(g— 1297 ?),

and D = 272(B — A?), where

-1 -1
g—1 g—1 k g—1 g—1
A= g gr? g r! =— and B= g G2 g r!
v
Jj=1 7=0 j=1 j=0

Secondly, they showed that the integers with fixed sum of digits are uniformly distributed in residue classes
if the modulus is not too large and relatively prime to (g — 1)g — this theorem was further generalized in
a very recent paper of Mauduit, Pomerance and Sarkozy [17], relaxing the condition that the modulus
is relatively prime to (¢ — 1)g. Furthermore, they were able to prove an Erdds-Kac-type theorem for
integers with fixed sum of digits.

Similar results for other kinds of digitally restricted sets are due to Erdés, Mauduit and Sérkozy ([8, 9],
integers with missing digits), Fouvry and Mauduit resp. Mauduit and Sarkozy ([10, 11, 18], integers with
congruence conditions for the sum of digits).

In this paper, we are going to prove a generalization of formula (3) to linear recurrent digit systems and
study the distribution in residue classes. It turns out that we have uniform distribution if there is no
prime divisor P of the modulus such that (G,,) is constant modulo P for all but finitely many values of
n.

We will make use of the following notational conventions: we write e(«) = exp(2mia), we use ¢1(G), c2(G),

for constants which depend only on the basis G of our digital system, and we write f(N) = Og(g(N)),
if there is a constant C(G) depending only on G such that, for sufficiently large N, f(N) < C(G)g(N)
holds.

2 Asymptotic enumeration

We start with a characterization of admissible digital expansions given by Pethé and Tichy in [21]:

Lemma 1 The (¢t 4 1)-tuple (eg,...,€) € NBH is the sequence of G-ary digits of an integer if and only
if

> 6;Gi < Gup (4)

Jj=0



forall0 <n<d-—1and
(€ny-ves€n—d+1) < (a1,...,aq) (5)

lexicographically (i.e. there is an 4 such that €nt1—j = a; for j <iand e,11-; < a;) foralld—1<n <t

This lemma enables us to establish a generating function for the integers with fixed sum of digits:

Proposition 2 Let F(k,v) be the set of integers with < v base-G digits and sum of digits k. Then we

have (1)

v p :C’ y
|F(k’l/)|:[$ k] )

q(z,y)

where p(z,y) and ¢(z,y) are polynomials and ¢(x,y) is given by

q(x, —1*2 Z_y (Hy‘“> a’. (6)
=1

1=1 7=0

Proof. By the preceding lemma, we have to consider sequences satisfying the two conditions (4) and

(5). We call such sequences good. Let a good sequence (¢g,...,€) be given. By (5), there is an i such
that e;41-; = a;j for j < i and €41—; < a;. The remaining digits (e, ..., €;—;) obviously form a good
sequence. Conversely, a sequence (b, a;_1,...,a1) with b < a; may be appended to any good sequence of

length > d to form another good sequence. Thus, if
) => v,
where the sum is over all good sequences € = (e, ..., e:) and s(e) = €9 + ... + €, we have
d a;—1
> (S ) (T ot
i=1 \ j=0

if t is large enough. This shows that the generating function for our problem is given by a rational

function of the form zg;’g, with ¢(z,y) as in (6). |

Lemma 3 Let ¢(z,y) be given by (6), and define A = A(y) for positive y as the unique positive solution
to g(A,y) = 0. Furthermore, define

_ N yey (M), )
S Y PROY T ®

Then p(y) is a continuous, strictly increasing function with lim, .o u(y) = 0 and limy_oo pu(y) = A
a1+...+ai—1
3

max;
for all y € [0, 1].

. Furthermore, there exists a constant ¢1(G) > 0 depending on G such that p/(y) > ¢1(G)

Proof. Obviously, g(z,y) is strictly decreasing in = and y, and ¢(0,y) = 1, whereas ¢(z,y) — —oo as
x — oo. Therefore, A(y) is well-defined, and so is u(y). Clearly, A(y) and u(y) are continuous. As
q(z,0) =1 — x, we know that A(0) = 1. Furthermore, ¢,(z,0) = —1, which means that x(0) = 0.

Since A(y) is an algebraic function with no branch points on [0,00) (note that the derivative ¢, (A(y),y)
is strictly negative on this interval), A(y) has a holomorphic continuation and is thus infinitely often
differentiable. Since A(y) # 0 for all y, this also holds for pu(y).

r(z,y) =1—q(x,y) is a polynomial in z, y with positive coefficients and constant coefficient 0. We write

(2, y) =25, rxFyt. Implicit differentiation yields

() = yay(A\y).y)  _ yry(AMy),y)
AW)ae(Aw),y) — Ay)r=(A(y), )

w



1(y) = : E (ery(a:, V)2 (w12 (2, ) + 22700 (2, ) + 2272 (2, 9) (yry (2, 9) + yPryy (2, 9)%)

w3yry(x,y

— 28y ro (2, y)ry (T, Y)Tay (2, y))

e=A(y)

The denominator is positive for y > 0. The numerator can be written as

2 2
2 2

g Iriga®y! E Ergatyt | + g krgay! E Prigaty!

Kl Kl k.l k,l

-2 Z krkl:ckyl Z lrkl:ckyl Z klrklzkyl
k.l k.l k.l
We set up = /rakyl, vy = k/rrebyt and wiy = [\/rakyl. Then this equals

2 2
2 2
E Uk W E v |+ E Ul Ukl E wiy | —2 E Ukl Vkl E Uk W E Vil Wk
k.l k.l k.l k.l k.l k,l k.l

= (u,w)?(v,v) + (u, v)*(w, w) — 2(u, v){u, w) (v, w),

where (.,.) denotes the scalar product. Combining the inequality between the arithmetic and geometric

mean and the Cauchy-Schwarz inequality yields

(u, W) (v, v)+(u, v)*(w, w) — 2(u, v){u, w) (v, W)

> 2/ (u, w)2(v, v)(u,v)2(w, w) — 2(u, v)(u, w) (v, w)
> 2¢/(u, w)2(u, v)2(v,w)2 — 2(u, v){u, w)(v, w)
=0

with equality if and only if v, w are linearly dependent. In our case, this can only be if ri; # 0 happens
only for one value of % By our conditions on the a;, this is impossible. Therefore, u'(y) > 0 for all
y € (0,00), which implies that u(y) is strictly increasing. Direct calculation shows that p/(0) = 1. So
1 (y) is continuous and positive on the compact interval [0, 1] and has thus a minimum ¢; (G) > 0.

Finally, we note that r(x,y) behaves like
Z yzle ar—1 i

for y — oco. Now it is easy to see that

iA
a(AW),y) ~ Y - #d a2 Z o
where the sum is over all i (there might be more than one) for which % = A. Tt follows
immediately that lim,_ p(y) = A. ]
REMARK. It is easily proved that A = a; — % > %, where M is the largest index such that a; = ay;.

Lemma 4 Let A1(y) be the solution of smallest modulus of ¢(z,y) = 0 for arbitrary complex y, and let
Az2(y) be one of the solutions of second-smallest modulus. Then there exist constants ¢(G), c2(G), c3(G), £1(G)
depending only on the sequence G such that c2(G) < 1, £1(G) > 0 and

A (y) ’ . G

202 < min(ea (@), e3(G)|y] (@) 8

T < (e, ea(©) ) ©)
forallye B={z€ C:|z| <1,|argz| < ¢(G)} and A\; coincides with the branch A on B.



Proof. M\ (y) coincides with A(y) on the compact interval [0, 1], since we already know that A(y) is the
unique solution of minimal modulus on this interval. Note that all branches of the equation ¢(z,y) = 0
except A tend to oo with some negative power of y as y — 0. Therefore, there exists some § > 0 such
that A1 (y) = AM(y) and

M) k1(G)
2 <G )

for all y with |y| < §, where ¢4(G), k1(G) are constants depending on G.

The absolute distance to the second-smallest solution is a continuous function on (0, 1], and it tends to
oo as y — 0, so it has a minimum on [0, 1].

Furthermore, if we choose €; small enough to avoid all the (finitely many) branch points of the equation
g(z,y) = 0 — there are none on [§/2,1] —, all branches are holomorphic on [§/2,1] x [—e1,€1], so they
satisfy a Lipschitz condition. This means that we can find ez > 0 such that A is the unique branch of
smallest modulus on [0/2,1] X [—ea, €3].

Choose ¢(G) small enough such that B is contained in

{y eC: |y| < (S} @] [6/2,1] X [—62,62].

B is a compact set, and the function f(y) = i;gzg is continuous on this set, if we take f(0) = 0. Thus it
has a maximum, which must be < 1. Take this as the constant c2(G). Then, (9) holds for some constant
Cg(G). | |

Corollary 5
Fay) = P8Y) p(M(y),y)

1(z,y)  (M(y),y)(x = Ai(y))
is a holomorphic function on {z € C: |z| < [A2(y)|} for all y € B, and there exist constants ¢5(G), k2 (G)

depending only on G such that
£ (2, 9)] < e5(Gy ™™ (10)

holds on {x € C: |z| < /|A1(¥)]|A2(y)|}. As a consequence,

v P(z,y) _ p(>\1(y%y) 1 »
b= ]Q(w,y) a qm(Al(y),y)Al(y) (1+0c(ng")), (11)

where ng > 1 depends only on G.

Proof. Note that qm(/\1€15)A,;()7{3£)/\1(y)) is the principal part of Zgzzg at * = A (y), so f(x,y) is indeed

holomorphic, since 5833 has a single pole at A1 (y) and no other singularity for |z| < |A2(y)].

Now, we write
q(z,y) = r(y)(@ — M) (= A(y) ... (x = Aa(y))
for y € B\ {0} and note that

G=(M(y),y) = r()(x = A2(y)) ... (x = Aa(y)),

yielding

_ p(x,y) 1 B 1
J@9) = @ =) (<:c TR0 ) v =) () - Ad<y>>) '

y is bounded on B, and |z| < |A2(y)| can be bounded by a power of y. Furthermore, the factors (z—A;(y))

are bounded below by |A2(y)| |1 — MW for 2 < /Th y)||A2(y)|, and the factors (A1(y) — A\;(y)) by
A2 (y)
A1
Pa@) |1 - |34




Altogether, we see that (10) holds for some constant ¢5(G) if y € B\ {0} and |z| < /| 1 (y)||A2(y)|. For
y = 0, however, the claim is essentially trivial.

Now, we have
v p(z,y)
2 (M (y), y)(z = A1 (y))

+ [2"]f (2, y)

and

@) () = jéc r T f () de < 2mes(Gy OV @) P @)

where C is the circle of radius y/|A\1 (y)||A2(y)| around 0. Finally,

v p(z,y) PAi(Y),y) —v1
x =— A1 (y
e ) T wtiw Y
for v > deg, p(z,y). The claim now follows from the preceding lemma. [ |

Next, we need a lemma from [19]:

Lemma 6 (Mauduit/Sarkézy [19]) For g > 1,0 <r <1 and all & € R we have

’ 1+re(a) +re(2a) + ...+ 19 te((g —

1)a) 2r
1+ 2 1 <1- —||04H2 (12)
r+re4+.. 419 g

Lemma 7 There exist constants ¢g(G), ¢7(G) depending only on G such that

_uyp(@,re(e) ‘ p(z,r)
Y < c(G) exp rv||a 13
o B < o G explcr( Gl | AT (13)
forall0 < r <1 and all « € R.
Proof. Note that z,(y) := [m”]% is a polynomial with positive coefficients in y. So, obviously,

zu(re(a)) < z,(r) for all v. Furthermore, z,(y) satisfies a recurrence relation of the form

zu(y)i Mz_ly (Hy )zy i

It follows that

First, we assume that a; > 1. Then, by the previous lemma,
a;—1 2 a;—1
ile (12" 1002 j
> ey | < (1= Zal?) X o
7=0
Trivially,
ai—1 i—1 ai—1  i-1
S ooy (e ) < S T
§=0 1=1
for all ¢ > 1. Now, if we define Z, (r, o) by Z,(r,a) = z,(r) for v < d and

a;—1 d a;—1 1—1
Z,(r,a) = (1 z—:||04|2) Z 7, 1 (ra +Z Z TJHT‘”Z,, i(r, Q)

= 1=2 j=0 =



we know that Z,(r,a) > |z, (re(a))| for all v. Since

1= 2o alzjlri>(1—1)(1+r)—1+7r(3_r)>1
a1 = - 4 B 4 7

Z,(r,«) is an increasing sequence. Furthermore,

i—1

2
S
|

—_

a;—1

J ay

rd r
=1

T
Jj=0

<.
I
o

for all i > 2, since r < 1 and the a; are decreasing. It follows that

Z,(r,a) < (1——|| )zdjalzlwﬁwzmm

=1 7=0
d a;—1 i—1
< exp <—|| ) E TJHTGZZU i(r, @)
=1 7=0 =

d 2T’L a;—1 i—1
SZexp( )ZTJHT‘“ZV i(ry )

and thus
Z,(r,a) < ¢6(G) exp(—c7(G)rv||el?)z, ()

for constants ¢(G), c7(G) = af? by simple induction on v. This proves the claim in the case of a; > 1.

If a1 = a3 = ... =aq =1, iterate the recurrence equation for z, once to obtain

d
2W) =Y v+ 9z iy) + v 2
=2

and apply the same method to this equation (note that we have at least one term of the form (1+ y), as
d > 2 in this case). [ |

Now, we are ready to prove our first main theorem following the same line of proof as Mauduit and

Sarkozy:

Theorem 8 Let F(k,v) be defined as in Proposition 2 and take A as in Lemma 3. Then, uniformly for

I = min(k, Av — k) — oo, we have

|F(k,v)| = —_Agg);iz))igg),r)wl/2(Dy)1/2rk)\(r)"(1 +0c((Dv)~1/2)), (14)

where 1 is defined by p(r) = £ and D = 2n2rp/(r).

v

Proof. From Proposition 2, we know that

F(k,v)| = oyt 228

First, let % < u(1). Choose 0 < r <1 in such a way that u(r) = % — this is possible by Lemma 3. Now,

we have

V)| =rFk v x”we—a «
|F(k,v)| = /_1/2[ ]q(x,re(a)) (—ka) da.

We split the integral in two parts: define



and

_ aPare@) o
J2/5<a|<1/2[ oG re(ay) ) de

where § = k~1/2logk. We will deal with J; first. If k is large enough, we have § < ¢(G), so we may
apply Corollary 5. This means that

é
" </ P W M(re(a))”le(ka)da) (1+ 06 r5"))

—5 —@z(Mi(re(a)), re(a))

% in a Taylor series around y = r; p(x, y) and —¢.(x,y) are polynomials with positive
p(=,0)

coefficients, and we have —g,(1,0) =1 and p(1,0) = 1 (note that % is the counting series for integers

with sum of digits 0). This means that p(A(y),y) and —¢,(A(y),y) can be bounded above and below for

We expand

y < 1 (the bounds depending only on G), and their derivatives are also bounded. Therefore, we have
p(Ai(re(e)), re(e)) p(A(r)), r)

g Onre(@)),re(a)] ~ —gu(a(r), ) (LT A+ Oale).

Likewise, we have
Ai(re(@)) = A(r) + 2miar N (r) — 272N (r) + 7N/ () + Og(ra?).

Inserting yields

5
Ji= )TN+ Og(ng”))/ A1) (1+b(r)a+ Og(a?))

—5 —¢=(A(r),7)
exp < ~ 2miavr N (r) N 212r?v( A ()N (r) + 1A ()N (r) — r N (r)?)

A(r) A(r)? +Og(ra’v) — 27rika> da.

r was chosen in such a way that u(r) = — Ne) % Thus, the coefficients of « in the exponent cancel
out. Furthermore, note that
2m2rv(N(r)N (1) + r X)X (r) — X (1)?)
Ar)?

= —21%rvp/ (r) < —27%rve (G) < 0
by Lemma 3. We write D = 272ry/(r) and use the standard estimates

&
[a(b(r)a + Og(a)?) exp(—Dva? + Og(ra’v)) da

5
= / (b(r)a + Og(a?) + Og(ra’v)) exp(—Dva?) da

-5
6 6
= Og¢g (/ o? eXp(DVOzQ)doz> + O¢ (7’1// ot eXp(DVOzQ)doz> ,
0 0
6 6 é
/ exp(—Dva? + Og(rva?)) da = / exp(—Dva?) da + Og (ru/ o? eXp(—Dua2)>
_5 -6 0
_ L 2 h exp(—Dva?)da + Og | rv /6 o® exp(—Dva?)
vV Dv 5 0 7

) VDuvs
/ of exp(—Dva?) da = (Dy)~(P+1)/2 / 2P exp(—2?) dx
0 0

< (DV)_(p+1)/2/ 2P exp(—x?) dx
0

-0 ((Dy)f(p+1)/2)



and

oo 1 oo
exp(—Dva?) da = / 22 exp(—z) dx
| espratyda = = [ p(—z)

exp(—Dvd?).

< 1
— 2Dvé

Since p/(y) is bounded on [0, 1] by Lemma 3, there are constants cg(G) and ¢g(G) such that

k k
G)— <r<eco(G)—.
cs(G) =7 < ()
Therefore, these estimates imply that
p(A(r),7) / —1/2 - —1/2
Jg=—""(2 A Y(14+ O¢((D .
1 7)\(7,)(11()\(7”)77”)( TV (T)) (T) ( + G(( V) ))
Finally, we estimate Js: by Lemma 7,
|Jo| = / [zy]pi(x,re(a)) e(—ka) da
<]l <1/2 q(z,re())
p(.’L‘,T) 1/2

< 2¢6(G)[x"] exp(—c7(G)rv|lal?) da

S—

q(z,r)
= O (A(r)™" exp(—c7(G)rvé?)).

Altogether, we have established formula (14) for £ < p(1). We indicate how to extend it to the case

E'> u(1): if A is taken as in Lemma 3 and | = Av — k, we have

g 0oy, y™)
|F(k,z/)| = [ Yy ]_q(l.yA,y—l)'

The proof now goes along the same lines, with u(y) replaced by A — u(y~!) and the roles of y and y~*
interchanged. u

Corollary 9 There is a constant ¢19(G) depending only on G such that the number of integers < N
with sum of digits k is bounded below by

p(A(r), 7)
_)‘(T)qm ()\(T), ’I“)

uniformly for k < p(1)v, k — oo, where v + 1 is the number of digits of N.

c10(G) - rEN(r) TR (15)

Theorem 8 is a consequence of general theorems of Bender and Richmond [1, 2] (see also Drmota [6]) in
the case when r is bounded above and below by positive constants. Equivalenty, % € [a, ] for constants
0 <a<b< A Tt is easy to see that the sum of digits asymptotically follows a normal distribution
with mean u(1)v and variance p/(1)v: note first that r=*\(r)=" = (r“(r))\(r))_y. The maximal value of

—log (r*MX(r)) is achieved when the derivative is 0, i.e.

X (r)
A(r)

which happens if » = 1. The following corollary of Theorem 8 gives precise information:

@ + 4/ (r) log(r) + = 1/ (r) log(r) = 0,

Corollary 10 When k is near the mean value, i.e. A = u(1)v — k = o(v), we have

Pk, v)] = —Aﬁ(>221<)£<11)>, FAL @mvp (1)~ /2 exp (—rﬁ,(l)) (1 406 (% + y—l/Q)) . (16)



Proof. We set n =1 —r and use the Taylor expansion of p around 1 to find that

T T\ )

Then,

=% = exp(—klog(1l — 1)) = exp (kn + %an + O(k:773)>
and 2 "
Furthermore,

p(A(r),7) v (1))~ 1/2 = p(A(1),1) J— —1/2 é
X)) )= s oa), ) e ) <”OG ())

We insert k = pu(1)v — A and use the formula

vy N (@) = AN () = Ay)N ()

to obtain the stated result. [ ]

REMARK. Note that %A(l)_” is (asymptotically) the number of all integers with an expansion
of < v digits.

Corollary 11 If k is small, i.e. k = o(v), we have
k 1-M'(0) k? k3 1
|F(k,v)| = (27k) "2 exp <k10g— +k+ 1=X0) +— +0¢g <— + —>) . (17)
v 2 v v
REMARK. It is easy to check that

4 d:2,a1:a2:1,
N0)=42 d=1,a1=20rd>2, a1 =as=...=ag=1,

0 otherwise.

Proof. We see that

since p/(0) = 1. This gives us

and

Therefore,

k "(0) k2 k3
—klogr = —klog; + HT() " +O¢ <§) ,



and

" " o 2 3
CvlogA(r) =k~ O ERO) =L KL (B
2 v V2

Inserting in (14) yields the stated result. [ |

EXAMPLE. It is not difficult to check that our result agrees with (3) in the case d = 1, a3 = g. We will
consider the classical Zeckendorf expansion (d = 2, a1 = ag = 1, Gg = 1, G; = 2) as another example.
In this case, we have

p(zay) =1 +1'y, Q(xvy) =1l—-z— y:rQa
yielding

A(y):%(\/mfl), u(y)%<1\/ﬁ)-

If we set % = 7, we obtain

()] ~ 4| s < i ) as)

2my(1 —2v)3v \y7(1 —29)1-2v

The mean value is given by uv = p(1)v = % (1 - %) v, the variance by o?v = p/(1)v = 573/2p,

3 Distribution in residue classes

The aim of this section is to prove that F(k,v) is well-distributed in residue classes modulo m provided
that m is not too large and there is no prime divisor P of m such that G,, is constant modulo P for all

but finitely many values of n.

Theorem 12 Let V(k,N) be the set of integers < N with G-ary sum of digits k. There exist positive
constants ko(G), c11(G), c12(G), c13(G) (depending on G only) such that for all | = max(k, Av — k) >
ko(G) (v denoting the number of G-ary digits of N ), 2 < m < exp(c11(G)I'?), h € Z, for which there is
no prime divisor P of m such that (G,,) is constant modulo P for all but finitely many values of n, we

have

{neV(k,N): n=h mod m}|— %|V(k,N)| < CllrflG) |V (k,N)|exp <c12(G)1O§m) . (19)

REMARK. The condition on the prime factors of m is a necessary one. If (G,) was constant modulo P
for all but finitely many values of n, the restriction on the sum of digits would imply a condition on the
residues modulo P. Note that (¢")n>0 is constant modulo P for all but finitely many values of n if and
only if Plg(g —1).

Proof. We follow the lines of [19] again. Again, we consider the case k < u(1)v only. if

N

D(z,7) =Y z""e(ny),

n=1

where z € C, v € R, we have

11



Now we take r as in the proof of Theorem 8 and obtain

H{n < N:sq(n)=k n=h modm}| = rk/o e(=kB) Y. (re()e™dp

1<n<N

Obviously, the summand corresponding to p = m equals = —~|V(k,N)|. Thus we have to estimate

%r—krg/ol ‘D (re(d), %)‘ dg.

We write N in base-G representation:

L(N) t

N = Z ejGj = ZGV-;GV-H
7=0

i=1

where 11 > 15 > ... > 1y and all ¢, are positive (i.e., we neglect all digits 0 in the base-G representation).

Then, the set {0, ..., N} can be partitioned into sets A;, where A; is the set of integers representable as
-1

> €,Gu, +aGy, +b,

i=1
where 0 < a <¢,, —1 and b is an arbitrary integer with < v; G-ary digits. Let the set of all such integers
be denoted by B,,. Additionally, we set A;y; = {N}. Then we have

N
L+ D(re(8),7) = 3 (re(8))**™e(n)
o
= Z Z re(B))%¢ (n) e(ny)
=1 neA;
t eul—l
= (re(B)*™Me(Ny) + 3 3 3 (re(@))ttrmmtereel)
I=1 a=0 beB,,
-1
e ((Z €, Gy, +aGy, + b) 7) )
i=1
from which it follows that
t €y, —1
ID(re(B),7)] <2+ Y _rort =t | N " (re(8 4+ Guy))?| | D (re(8))*¢ Pe(by)
=1 a=0 beB,,
<24 Z S, | ST (re(3) 0 Weby)|

beB,,

We write

uy(B,7) =Y (re(3))* Pe(by).
beB,

Then we see that u, satisfies a recursive relation:

Lemma 13 For v > 2d, we have

d f[a;—1 i—1
=3 GelB+ Gl (H (re(B + Gu_mnf“) w57 (20)

=1 7=0 =1

12



Proof. This is proved in the same way as Proposition 2: note that appending a sequence of the form

(6,ai—1,...,a1) with € < a; to a good sequence of length v — i gives a factor of

(re(B))m T Ta1%e((Gyorar + ... + Gu_iv1ai—1 + Gy_i€)y).

|
The recurrence can be used to prove an analogue of Lemma 7:
Lemma 14 There exist constants ¢14(G), ¢15(G) depending only on G such that
v—1
uy(B,7) < c14(G) exp (Cls(G)T s+ Gnvl2> u,(0,0) (21)
n=0

forall0 <r <1andall 3,v€R.

Proof. This is done almost analogously to the proof of Lemma 7. For a; > 1 (the other case is similar),

we have
(B, < (1 - 2—T|6+Gywl2> 3 s (6,) |+iZH r a2 (8,7)]
a1 j=0 i=2 j=0  1=1
by the same argument as in Lemma 7. If we define U, (3,7) by U,(8,7) = u.,(0,0) for v < d and
U.(8,7) = <1 - %||6+G1,17||2) QIZITJUV 1(8,7) JFi%Z_lT]ﬁrm v—i(B,7),
a1 =0 i—2 j=0 1=

we know that |u,(8,v)| < U,(B,7) for all v, and the argument of Lemma 7 shows that

d a;—1 i—1

Ul/(ﬁ’ = (1 - _Hﬁ—’—GlI 17”2) Z Z T]HT lUu 7 Ba

=1 7=0

Write C; := Zal_l ITTiZ 7. For a sequence X = (z,)n>0 With 1 > 2, > 1 — L define W, (x) by
W, (x) = u,(0,0) for v < d and

Since z,Cq > (1 — —) (1+r)=1+ # > 1, we know that W, (x) is increasing, and we also know that
the C; are decreasing, so C;W, _;(x) is always decreasing. Let x(™ be the sequence x with 1 at the place
of x,,. We claim that

W, (x) < (1 — 1_736") W, (x(™)

holds for v > n. This is trivial for v = n, since we have

Wi(x) = 2, W, (x("))

13



and (1 - 1= z") > xp,. We proceed by induction: for 1 < j < d— 1, we have

n+] ZCWnJr] 7 +CW Z CWn+] 7 )
1=7+1

d
ZOWHH (x4 2, O (™) Y Oy (x ™)
=1 1=7+1

12, = d—j+z 4
< (1 - n) Z CiWopji(x™W) 4 — 11 Z CiWypj—i(x™)

d—j+1 Py

For j > d, the induction is even simpler. Another straightforward induction shows that

x)gf[d<

where 1 is the sequence consisting only of 1’s. In our special case, we take z, = 1 — ﬁ 18+ Grn-17|? to
show that

zj) W, (1),

174

05, < I1 (1 228+ Gl ) 0 0,0)
n=d

1-d v
2r
< _ — B 2
(1 2a1d2) [1 <1 a2 18+ Gno1l )uy(o,())

n=1

—d v—1
2r
<(1- _ ) 0
( 2a1d2> XP( w2 n§:O||6+G ol >u (0,0)

which finally proves the claim. [ |

Lemma 15 Let m,p € Nand 1 < p < m— 1. If there is no prime divisor P of m such that the sequence

G, is constant modulo P for all but finitely many values of n, we have

p—1 2
J P
+ = > — 4+ .
nE:o 16} G”m _clS(G)logm Oq(1) (22)

Proof. Without loss of generality, we may assume that (p,m) = 1 (cancellation of common factors only
improves the bound, and the conditions keep true). First, we show that there exist constants ¢17(G) and
c18(G) such that, among any set of ¢17(G) + c15(G) log m consequent integers, there is an integer n such

that
1

2(a1 + ...+ aq)
For this purpose, we define a sequence (Ay)n>0 by Ap = (Gng1 — Gn)p mod m and -4 < A, < .

O

We want to show that there are constants ¢17(G) and ¢15(G) such that for all I > 0, there is an n <

c17(G) + ¢18(G) log m with
1

“ 2(a1+ ...t aqg)

HAI—HL

m

14



First, of all, we will take ¢17(G) > d. Consider the values Ay, Ary1,...,Arrd—1. If one of them has

absolute value > we are done. Otherwise, define the sequence (Bp)n>0 by Bn = Arqn

2(a1+r.r.l.+a,i)’
(n=0,...,d—1) and

Bn—i—d = aan—i-d—l + a23n+d—2 + ...+ aqB,.

Note that B,, = Ay, for all values of n. Now we use a result of Brauer [4] that was also applied in [21]:

The characteristic polynomial

xd—alxdfl—...—ad

has a dominating root 6 € [a1, a; + 1) that is a Pisot number, i.e., all conjugates 65, ...,04 (if d > 1) have

modulus < 1. Thus, we can express B,, by an explicit formula:
d
By = 60"+ _ pn’I0r,
i=2

where the ; are linear combinations of the initial values By, B, ..., Bq—1 (with algebraic coefficients
depending only on the characteristic polynomial). Therefore, there exist constants c19(G) and k3(G)
such that

| By, — B0"| < c19(GYymn"*( gy

The coefficient 3 is also a linear combination of the initial values, i.e. it is of the form
xoBo+ ... +xq-1Ba1,

where the z; are algebraic numbers depending on the characteristic polynomial. By a result of Schmidt
(cf. [7, Theorem 2.1]), the inequality

0< |1'OBO + ...+ xdled71| < M—dHl—e

with |B,,| < M has only finitely many solutions for every e > 0; therefore, there are constants co0(G) > 0
and £4(G) such that either
B=x0Byg+...+x9-1B4-1=0

or
18] = |2z0Bo + . .. + 24—1Ba_1| > c20(G)M 54D

whenever | By, ..., |B4-1| < M. We know that 8 cannot be 0, since then we would have lim,,_,o, B, = 0,
i,e. A, =0 mod m for all but finitely many values of n. This contradicts the assumptions on G: as
(p,m) = 1, G, would be constant modulo m for all but finitely many values of n. Therefore, since

|B,| < m for 0 <n <d-—1, |8 > co1(G)m™ "+, where co1 > 0 depends only on G. It follows
that

|Bn| Z 021(G)m_”49” — clg(G)mn”L"(G)|92|"
for all n; there are constants co2(G) and ca3(G) such that
021(G)m—n4(G)9n — clg(G)mn’is(G)|92|"

for all n > co2(G) logm + co3(G). Thus, B, > m

smallest index n for which this is true, we must also have B, < 3, so

_Bn
m

for some n < c22(G) logm + c23(G); for the

1

Al+n
~ 2(a1+ ...t aq)

m

15



This proves the claim, and the lemma is a simple consequence if we make use of the inequality
P2 pl? o1 P P2
m m 2 m m
|

We turn back to the proof of Theorem 12. By the preceding lemmas, there are constants co4(G) and

¢25(G) such that
rv

Uy (5, %) < c24(G) exp <025(G) logm> u,(0,0).

Therefore, since u,,(0,0) = >, 5 r*¢®) we have
Y1

‘D (re(ﬁ), %)‘ < c24(QG) Zrl_leyl exp (—025(6') it ) Z rsa®) | 4 Oc(1).

We divide the sum on the right side into two parts by defining the integer ¢ for which vq > v/2 > v
(set v411 = 0): the first part is defined by

q
L 1—1 ryy a(b) TV/Q -1
S = l_zlr €1, €XP (—025 logm) Z r°9 %) < o6 (G) exp (—025 og m Z Z

bEB,, bEB,,

where co6(G) is the largest possible digit that can appear in a G-ary expansion. Next, we observe that

PG (b) _ l/l ( )
2 (J(z )

bEB,,

By Corollary 5, this equals

S pre® — - p(A(r),7) A (1 + 06 (ng™)),

bEB,,
so that we obtain

ry/2

. Tl 1 ()\(T),T) r ——1 —u
S () A (0 0a 1)

=1

)
= ¢26(G) exp (—025 i 2) (14 0c (1)) (—M) A(r)—v-ijrl—u(r)v—w
> .

og N, 7)
p(A(T),T) )Y - rA(r))?
) ( )\(r)qz()\(r),r)) A(r) Z( A

If a; > 2, we have q((1+ 7+ ... +r2~ )7L ) <0 and thus A(r) < (1 +7r+... 72~ H)= 1< (1 +7)7 L,
< < \/1+—4T L) <o,

Sl S CQG(G) exp (—025 1
ogm

TV/2

)
u/z)

S C26 (G) exp <625 + OG

% If a; = 1, we also have az = 1 and thus ¢(¥4"—

This means that the infinite sum converges and is bounded by

which in turn means that rA(r) 1—+T

so we obtain rA(r) < ¥ 1+24T’1 < ‘/52

32—‘/5. Together with Corollary 9, we obtain

S = Og <|V(k,N)|rkk1/2 exp <025(G) rv/2 )) .

logm

The other part of the sum,

t
TV,
Sy 1= Z rlile,,l exp <025(G)10gjn) Z rsa(®),

bEB,,




can be estimated as follows:

t
SQ SCQG(G) Z Tl71 Z TSG(b)

l=q+1 bEByl
—enl©) 32 7t (<) 0 0000 06°)

and thus
Sy = Og (|V(k,N)|rkk:1/2)\(r)”/2) .

It is known that p'(y) is bounded above and below by positive constants depending only on G, which

means that there are constants cg, cg such that

<r< cQ(G)S.

cs(G)

R

Furthermore, A (y) =

—w is strictly negative on (0,1] with lim,_o+ X (y) = —1, so it is bounded

above and below by negative constants. So there are constants ca7(G) and c25(G) such that

027(G)§ SAMO0) =AM = 1 - \(r) < @8(0)%,

A2 < (1 _ cw(c)%)y/2 < exp (—C27T(G)k:) .

and thus

Altogether, we obtain

S 4+ Sy = Oc <|V(I<:,N)|rkk1/2 <exp <—c29(0)$) + exp (—@%@’f))) g

which proves Theorem 12. [ |

REMARK. As an example, we note that, since the Fibonacci numbers clearly satisfy the condition for any
modulus, the set of integers with a fixed number of 1’s in the Zeckendorf representation is well-distributed

modulo any integer modulus. As in [19], Theorem 12 can also be used to prove the following:

Corollary 16 If z € N, z > 2, then there are constants No(G), c30(G), ¢31(G) (depending on G and z)
such that for all N > Ny(G) and all k with

le(D)v — k| < e30(G)(log N)3/4,

where v+ 1 is the number of G-ary digits of N, the number of integers in V (k, N) which are not divisible
by the z-th power of a prime P in the set

P :={P: P prime, P satisfies the condition of Theorem 12}

is given by

s ) ) _ [V (k, N)| (140 (exp(—ea1(G)(l0g N)12) ) ). (23)
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