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Abstract

Fibonacci trees are special binary trees which are of natural interest

in the study of data structures. A Fibonacci tree of order n has the

Fibonacci trees of orders n− 1 and n− 2 as left and right subtrees. On

the other hand, the Fibonacci number F (G) of a graph G, introduced

in a paper of Prodinger and Tichy in 1982, is defined as the number of

independent vertex subsets of G. In this paper, we study the Fibonacci

number of Fibonacci trees and show that the underlying system of re-

currence equations belongs to a class with a special property. It will

be shown that the Fibonacci number of the n-th Fibonacci tree with

Fn+2 − 1 vertices is asymptotically 0.682328 · (3.659873)Fn .

1 Introduction and Preliminaries

Fibonacci trees (cf. [4, 7]) are special balanced trees which are of natural

interest in computer science. They are defined as binary trees, where the
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Fibonacci tree of order n has a left subtree which is a Fibonacci tree of order

n−1 and a right subtree of order n−2 (an order 0 tree has no nodes, an order

1 tree has exactly 1 node). The Fibonacci tree of order n has exactly Fn+2 − 1

nodes.

Fibonacci trees appear in the study of AVL-trees, special highly balanced

binary trees. The heights of the two subtrees at any vertex of an AVL-tree

may only differ by at most 1. A Fibonacci tree is thus the most unbalanced

AVL-tree that is allowed. Figure 1 shows the Fibonacci tree of order 4.

t

t t t

t t

t

�
�

�
�

�
�

�
�

�

Q
Q

Q

HHHH
�

�

Figure 1: The Fibonacci tree of order 4.

On the other hand, the concept of the Fibonacci number for graphs was intro-

duced in a paper of Prodinger and Tichy [9]. The Fibonacci number F (G) of

a graph G is defined as the number of independent vertex subsets of G, where

a set of vertices is said to be independent if it contains no pair of connected

vertices. The name is due to the fact that F (Pn), where Pn is a simple path

of length n, gives the sequence of Fibonacci numbers. Similarly, F (Cn), where

Cn denotes the cycle of length n, gives the Lucas numbers.

In the original work, the authors could prove that the star has maximal Fi-

bonacci number among all trees, whereas the path has minimal Fibonacci

number. They also considered recursions for several classes of graphs. In sub-

sequent papers ([5, 6]), classes of simply generated trees were investigated. The

concept of Fibonacci numbers even turned out to be of use in combinatorial

chemistry (cf. [8]).

For a true Fibonacci enthusiast, it is very natural to bring the two concepts
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together by considering the Fibonacci number of a Fibonacci tree. For this

purpose, we deduce a system of recurrence equations. Let an be the number

of independent subsets of the n-th Fibonacci tree which contain the root and

let bn be the number of independent subsets which do not contain the root. It

is quite obvious now – from the construction of the Fibonacci trees – that the

equations

an = bn−1bn−2

and

bn = (an−1 + bn−1)(an−2 + bn−2)

hold. Together with the intitial values a0 = 0, a1 = b0 = b1 = 1, these

equations determine an and bn uniquely. Recurrences of this type typically

lead to a doubly exponential growth (cf. [1]), and this also holds in our case.

However, it will be shown in the following section that the fraction an

bn
can be

given by an explicit formula in terms of n, which is quite unusual for recurrences

of this kind; this phenomenon is due to the special form of the recurrence; we

will generalize the recurrence to a parametric class for which this property still

holds. Moreover, we will derive asymptotic expressions for an, bn and the total

number of independent vertices, an + bn.

2 A class of recurrence equations and its

properties

We generalize the system for the Fibonacci number of Fibonacci trees in the

following way: let α and β be arbitrary positive numbers, and fix an integer

k > 1. Now, let us consider the system of recurrences given by

an =
k
∏

i=1

bn−i,

bn =
k
∏

i=1

(αan−i + βbn−i),

(1)
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together with positive initial values ai, bi (0 ≤ i < k). First, we are going to

prove a short lemma on the quotient an

bn
– quite surprisingly, we can give a

rather simple formula for this fraction in terms of n:

Lemma 1 Let an, bn be given by the system (1). Then, the quotient an

bn
can

be written as an

bn
= rn

rn+k
, where rn is a linear recurrent sequence given by

the initial values rn = an

bn

∏n−1

j=0

(

αaj

bj
+ β

)

(0 ≤ n ≤ k) and the recurrence

rn = βrn−1 + αrn−k−1.

Proof: By simple induction on n. Note first that

bk

ak
=

k−1
∏

j=0

αaj + βbj

bj
=

k−1
∏

j=0

(

αaj

bj
+ β

)

by (1), so rk = 1. Thus, we have, for n ≤ k,

rn+k = βrn+k−1 + αrn−1 = β2rn+k−2 + αrn−1 + αβrn−2

= . . . = βnrk + α

n
∑

j=1

βj−1rn−j

= βn + α

n
∑

j=1

βj−1
an−j

bn−j

n−j−1
∏

i=0

(

αai

bi
+ β

)

,

and it is not difficult to prove (by means of another induction) that this equals

n−1
∏

j=0

(

αaj

bj
+ β

)

.

Therefore,

rn

rn+k
=
an

bn

holds for n ≤ k. For the induction step, note again that dividing the two

equations in (1) yields

bn

an
=

k
∏

i=1

(

α
an−i

bn−i
+ β

)

.

Now, by the definition of rn and the induction hypothesis, we have

α
an−i

bn−i
+ β =

αrn−i + βrn−i+k

rn−i+k
=
rn−i+k+1

rn−i+k
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and hence

k
∏

i=1

(

α
an−i

bn−i

+ β

)

=

(

n+k
∏

i=n+1

ri

)(

n+k−1
∏

i=n

ri

)−1

=
rn+k

rn

,

which finishes the induction. �

Now, the first equation in (1) can be written as

xn =

k
∑

i=1

xn−i + yn,

where xn = log bn and yn = log bn

an
= log

rn+k

rn
. Iteration yields

xn =

n
∑

i=k

dk−1,n+k−i−1yi +

k−1
∑

l=0

dl,nxl,

where the sequences dl,n are defined by dl,n = 0 (0 ≤ n < k, n 6= l), dl,l = 1

and dl,n =
∑k

i=1
dl,n−i. Note that we obtain the Fibonacci sequence in the case

k = 2. From a result of Brauer [2], we know that the polynomial xk −
∑k−1

i=0
xi

has a dominant root φ > 1 and all other roots have absolute value < 1. Let

φ = φ1, φ2, φ3, . . . , φk be the roots of this polynomial. Then there are constants

γl,j (0 ≤ l < k, 1 ≤ j ≤ k) such that

dl,n =
k
∑

j=1

γl,jφ
n
j .

Suppose that φ2 is the root of second-largest modulus. Then

dl,n = γl,1φ
n +O(|φ2|n)

and thus
k−1
∑

l=0

dl,nxl =

(

k−1
∑

l=0

γl,1xl

)

φn +O(|φ2|n).

Furthermore,

n
∑

i=k

dk−1,n+k−i−1yi =
k
∑

j=1

γk−1,j

n
∑

i=k

φn+k−i−1

j yi.

We have to distinguish two different cases for the inner sum. For both cases,

we note first that the polynomial xk+1 −βxk −α has a dominant positive root
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ψ, so rn = δψn(1 + O(η−n)), where δ and η > 1 are positive constants. This

shows that yn = log rn+k

rn
= (k logψ)(1+O(η−n)). We use C as an abbreviation

for k logψ. Now, for j > 1, we have

n
∑

i=k

φn+k−i−1

j yi =
n−1
∑

i=k−1

φi
jyn+k−1−i

=
∑

k−1≤i≤n+k
2

−1

φi
jyn+k−1−i +

∑

n+k
2

−1<i≤n−1

φi
jyn+k−1−i

=
∑

k−1≤i≤n+k
2

−1

φi
jC(1 +O(η−n/2)) +O





∑

n+k
2

−1<i≤n−1

|φj|i




= C

∞
∑

i=k−1

φi
j +O(|φj|n/2) +O(η−n/2).

On the other hand,

n
∑

i=k

φn+k−i−1yi = φn+k−1

n
∑

i=k

φ−iyi

= φn+k−1

∞
∑

i=k

φ−iyi − φn+k−1

∞
∑

i=n+1

φ−iyi

= φn+k−1

∞
∑

i=k

φ−iyi − Cφn+k−1

∞
∑

i=n+1

φ−i(1 +O(η−n))

= φn+k−1

∞
∑

i=k

φ−iyi −
Cφk−1

φ− 1
+O(η−n).

Altogether, we see that there are positive constants A,B such that

bn ∼ A · Bφn

and an ∼ e−CA · Bφn

.

Inserting in the first equation of (1) yields A = e−
C

k−1 , so we arrive at the

following theorem:

Theorem 2 If an, bn are given by the system (1), then there is a positive

constant B (which depends on the initial values) and another constant θ =

min(|φ2|−1/2, η1/2) > 1 such that

bn = ψ− k
k−1 · Bφn

(1 +O(θ−n)) and an = ψ− k2

k−1 · Bφn

(1 +O(θ−n)),

where ψ is the unique positive root of the polynomial xk+1 − βxk − α and φ is

the dominant root of xk −
∑k−1

i=0
xi.
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Remark: In the special case that corresponds to the Fibonacci numbers of

Fibonacci trees (i.e. k = 2, α = β = 1), we have ψ = 1.465571 . . . and

B = 1.786445 . . .. B is easily calculated by the formula

logB =
1√
5

∞
∑

i=0

(

1 +
√

5

2

)−i

log
ri+2

ri
=

1√
5

∞
∑

i=1

(

1 +
√

5

2

)−i

ri+1,

where r0 = r1 = r2 = 1 and rn = rn−1 + rn−3. Now, we have

an ∼ A1B
φn

, bn ∼ A2B
φn

,

where A1 and A2 are the positive roots of the polynomials x3 − 2x2 + 5x − 1

and x3 + 2x2 + x− 1 respectively. If we set B′ := B
√

5, we obtain

an ∼ A1B
′Fn , bn ∼ A2B

′Fn ,

where Fn denotes the Fibonacci numbers. Thus, an and bn almost behave like

the “multiplicative Fibonacci sequences” studied in [3]. Remembering that the

number of vertices of the n-th Fibonacci tree is exactly Vn = Fn+2 − 1, we see

that the Fibonacci number of the n-th Fibonacci tree is asymptotically

1.120000 · (1.641439)Vn.

From [9], we know that the Fibonacci number of a tree with V vertices lies

between FV +2 and 2V −1 + 1. Furthermore, it was shown in [10] that the

average Fibonacci number of a tree is asymptotically 1.129410 · (1.674490)V ,

so the Fibonacci number of a Fibonacci tree is comparatively small.

Remark: We can easily modify the construction of Fibonacci trees in the

following way: the subtrees of the k-ary analogue of order n are the trees of

order n− 1, n− 2, . . . , n− k. Then, the corresponding system of recurrences

for the Fibonacci numbers of these trees has exactly the form (1).
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