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Abstract. The correlation of graph characteristics such as the number of independent vertex
or edge subsets, the number of connected subsets or the sum of distances, which also play a role
in combinatorial chemistry, is studied by a generating function approach and asymptotic analysis.
It is shown how an asymptotic formula for the correlation coefficient can be obtained when simply
generated families of trees are investigated. For rooted ordered trees, the calculations are done
explicitly. Eventually, further feasible correlation measures are discussed.
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1. Introduction. In combinatorial chemistry, so-called topological indices are
used for the description of the structural properties of molecular graphs. Formally,
such an index is a map from the set of graphs into the real numbers (usually integer-
valued). Typically, for a fixed number of vertices, the trees of maximal and minimal
index are the path and the star respectively (or vice versa). A variety of graph-
theoretical indices has been proposed for this purpose, and their connection to the
physico-chemical properties of the corresponding molecules has been studied (cf. [19,
23]).

The isomer-discriminating power, a measure for the ability of an index to distin-
guish between isomeric compounds, has been considered in the paper [15], and there
is also a large amount of literature on extremal and asymptotic properties of various
indices, we refer to [3, 4, 11, 12, 16, 20, 22].

However, it seems that there is no theoretical result on the correlation between
the different indices yet. It should be quite natural to claim some strong correlation
between them, since they all reflect the structural properties of graphs in some way.
This paper tries to fill this gap a little by proposing measures for the correlation of
two indices and discussing them.

The main part of this paper will deal with the asymptotic behavior of the classical
correlation coefficient given by

r(Xn, Yn) =
E(XnYn) − E(Xn)E(Yn)
√

Var(Xn)Var(Yn)
. (1.1)

Here, Xn = X(Tn) and Yn = Y (Tn) are the X- and Y - index of a tree Tn on n

vertices taken uniformly at random from some family of trees – for simplicity, we will
only consider rooted ordered trees in detail; however, the methods can be extended to
other families of simply generated trees (such as binary trees, cf. [4, 17]) quite easily.

The asymptotic behavior of the correlation coefficient will give us a measure of
the linear correlation of the indices X and Y . Other possibilities to define such
a measure are discussed afterwards, but it seems that there is no possibility for a
similar asymptotic discussion in these cases.

The indices that will be taken into consideration are the following:
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(1) The Merrifield-Simmons- or σ-index is defined to be the number of indepen-
dent vertex subsets of a graph, i.e. the number of vertex subsets in which no
two vertices are adjacent, including the empty set. Merrifield and Simmons
investigated the σ-index in their work [19] and pointed out its correlation to
boiling points of molecules.

(2) The Hosoya- or Z-index ([8]) is defined as the number of independent edge
subsets (also referred to as “matchings”), i.e. the number of edge subsets in
which no two edges are adjacent, including the empty set again.

(3) The number of subtrees is called ρ-index in [19] and was discussed lately in a
paper of Székely and Wang [22].

(4) The Wiener index is probably the most popular topological index (s. [3, 4,
26]). It is defined as the sum of all the distances between pairs of vertices,
i.e.

W (G) =
∑

v,w∈V (G)

dG(v, w). (1.2)

Section 2 will deal with the correlation of (1), (2) and (3). The Wiener index has
another growth structure than the other three, so we need a different approach, which
will be presented in section 3. Finally, we will take a look at some other statistical
measures in section 4.

2. σ-, Z-, and ρ-index. The method to determine the expected values of these
indices for rooted ordered trees on n vertices has been given in several papers [11,
12, 13]. However, for the sake of completeness, it is repeated here. It is well known
that the generating function for the number of rooted ordered trees is given by the
functional equation

T (z) =
z

1 − T (z)
, (2.1)

which is an immediate consequence of the recursive structure of this family of trees.
Now, consider the σ-index for instance. We want to determine the function

S(z) =
∑

T

σ(T )z|T |,

where the sum goes over all trees T and |T | denotes the number of vertices. Now,
we distinguish between independent sets containing the root and those not containing
it and denote the corresponding quantities by σ1(T ), σ2(T ). If T1, . . . , Tk are the
branches of the rooted tree T , it is easy to see that the recursive relations

σ1(T ) =
k
∏

i=1

σ2(Ti),

σ2(T ) =

k
∏

i=1

(σ1(Ti) + σ2(Ti))

hold. These relations can be translated to equations for the corresponding generating
functions: if S1(z) is the generating function for the number of subsets of the first
type and S2(z) the generating function for the number of subsets of the second type,
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we obtain

S1(z) =
∑

T

σ1(T )z|T |

=
∑

k≥0

∑

T1

∑

T2

. . .
∑

Tk

(

k
∏

i=1

σ2(Ti)

)

z|T1|+...+|Tk|+1

= z
∑

k≥0

(

∑

T

σ2(T )z|T |
)k

= z
∑

k≥0

S2(z)k =
z

1 − S2(z)

(2.2)

and in exactly the same way

S2(z) =
z

1 − S1(z) − S2(z)
. (2.3)

The asymptotic growth of the coefficients of functions satisfying algebraical equations
of this kind can be determined by a standard application of the Flajolet-Odlyzko sin-
gularity analysis, which is discussed in several papers such as [1, 2, 5, 18] (sometimes,
one can even find exact expressions by means of Lagrange’s inversion formula; this is
the case for this example (s. [11, 12]), but we won’t need the exact solution, which
can be given as a hypergeometric sum). However, the details can be intricate, as will
be explained in the following. Here, inserting yields

S2(z) =
z

1 − z
1−S2(z) − S2(z)

or

S2(z)3 − 2S2(z)2 + S2(z) − z = 0.

Bender [1] gives a general theorem dealing with functional equations of the type
F (z, w(z)) = 0. His theorem states that, given a minimal solution (with respect to
absolute value) (α, β) of the system

F (z, w) = 0, Fw(z, w) = 0,

which lies within the region of analyticity of F and satisfies Fz(α, β), Fww(α, β) 6= 0,
the asymptotic behavior of the coefficients an of w(z) is determined by

an ∼
√

αFz(α, β)

2πFww(α, β)
n−3/2α−n.

However, there is a slight mistake in this theorem, as was pointed out by Canfield [2],
and the method might give erroneous results. The theorem only holds true if α is
indeed the radius of convergence of w(z) and the only singularity on the circle of
convergence.

In the present case, we know from [7, Th. 12.2.1] (see also [2]) that a singularity
of an algebraic function w(z) given by a polynomial equation of the form

F (z, w) =

k
∑

j=0

pk−j(z)wj = 0
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is either a zero of p0(z) (here, there is no such zero) or given by a solution of the
system F (z, w) = 0, Fw(z, w) = 0.

Therefore, the common singularity z0 of S1(z), S2(z) and S(z) = S1(z) + S2(z)
nearest to the origin is given by the system of equations

F (s, z) = s3 − 2s2 + s − z = 0,

∂

∂s
F (s, z) = 3s2 − 4s + 1 = 0,

yielding z0 = 4
27 . Using the formula for the number of rooted ordered trees on n

vertices,

tn =
1

n

(

2n − 2

n − 1

)

∼ 1

4
√

π
n−3/24n,

it is easy now to find out the asymptotics for the expected σ-index:

E(σn) ∼
√

3

(

27

16

)n−1

≈ (1.02640) · (1.6875)n.

Similarly, for the Z-index, we have

Z1(T ) =

k
∑

j=1

Z2(Tj)

k
∏

i=1
i6=j

(Z1(Ti) + Z2(Ti),

Z2(T ) =

k
∏

i=1

(Z1(Ti) + Z2(Ti)),

where Z1(T ) and Z2(T ) denote the number of independent edge subsets containing
resp. not containing an edge incident to the root. From this, we obtain the equations

Z1(z) =
zZ2(z)

(1 − Z1(z) − Z2(z))2
,

Z2(z) =
z

1 − Z1(z) − Z2(z)
,

(2.4)

for the respective generating functions. This system gives us the asymptotic expression
for the average Z-index:

E(Zn) ∼

√

65 −
√

13

78

(

35 + 13
√

13

54

)n

≈ (0.88719) · (1.51615)n.

Finally, for the ρ-index,

ρ1(T ) =

k
∏

i=1

(1 + ρ1(Ti)),

ρ2(T ) =

k
∑

i=1

(ρ1(Ti) + ρ2(Ti)),
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where ρ1(T ) and ρ2(T ) denote the number of subtrees containing resp. not containing
an edge incident to the root. Here, the system of equations for the corresponding
generating functions is

R1(z) =
z

1 − R1(z) − T (z)
,

R2(z) =
z

(1 − T (z))2
(R1(z) + R2(z)),

(2.5)

yielding

E(ρn) ∼ 16

3
√

15

(

25

16

)n

≈ (1.37706) · (1.5625)n.

All these results have already been given in a paper of Klazar [13]. Now, to find the
covariances, one needs four generating functions connected by a system of equations.
For the covariance of the σ- and Z-index, for example, we take SZ11, . . . , SZ22 to be
the generating functions for the product of the number of independent vertex subsets
and independent edge subsets such that the root is contained in

• the vertex and the edge subset,
• the vertex, but not the edge subset,
• the edge, but not the vertex subset,
• neither,

respectively. The functional equations can be seen to be a combination of those for
S1 and S2 resp. Z1 and Z2:

SZ11(z) =
z SZ22(z)

(1 − SZ21(z) − SZ22(z))2
,

SZ12(z) =
z

1 − SZ21(z) − SZ22(z)
,

SZ21(z) =
z(SZ12(z) + SZ22(z))

(1 − SZ11(z) − SZ12(z) − SZ21(z) − SZ22(z))2
,

SZ22(z) =
z

1 − SZ11(z) − SZ12(z) − SZ21(z) − SZ22(z)
.

(2.6)

For instance, the functional equation for SZ11 is derived as follows:

SZ11(z) =
∑

T

σ1(T )Z1(T )z|T |

=
∑

k≥0

k
∑

j=1

∑

T1

∑

T2

. . .
∑

Tk



σ2(Tj)Z2(Tj)
∏

i6=j

σ2(Ti)(Z1(Ti) + Z2(Ti))





· z|T1|+...+|Tk|+1

= z
∑

k≥0

k SZ22(z)(SZ21(z) + SZ22(z))k−1

=
z SZ22(z)

(1 − SZ21(z) − SZ22(z))2
.

Since all the functional equations can be written in polynomial form, it is possible to
employ the method of Gröbner bases (cf. [6]) and a computer algebra package such
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as Mathematica r© (for details, see [24]) to obtain a single polynomial equation from
the system. In this case, we find that s = SZ22(z) satisfies the polynomial equation

F (z, s) = s10 + 2zs8 − 3zs7 + z2s6 − 4z2s5 + 3z2s4 − z3s3 + 2z3s2 − z3s + z4 = 0.

Since SZ(z) = SZ11(z) + SZ12(z) + SZ21(z) + SZ22(z) = 1 − z
SZ22(z) , the smallest

singularity of SZ is either a singularity of SZ22 or a zero of SZ22. However, from the
functional equation we know that SZ22 has only one zero at z = 0, where the zero
cancels out with the numerator. Therefore, we only have to find the smallest singu-
larity of SZ22 to apply Bender’s theorem. Fortunately, things are still comparatively
simple since we can bound the range of the singularity by an a-priori estimate.

Again, the leading coefficient of the polynomial equation is 1, so it has no ze-
roes. Therefore, the dominating singularity is a solution of the system F (z, w) = 0,
Fw(z, w) = 0 again. The solutions of this system can be found by the method of
Gröbner bases as well – it turns out that a singularity z0 of SZ must be a solution of

5038848z4 − 221833728z3 + 5017360096z2 + 3451610880z − 387420489 = 0.

Now we note that, for trivial reasons, 1 ≤ σ(T ), Z(T ), ρ(T ) ≤ 2|T | for all trees T .
This shows that the coefficients cn of SZ are bounded by

1

n

(

2n − 2

n − 1

)

≤ cn ≤ 1

n

(

2n − 2

n − 1

)

· 4n,

so the radius of convergence of SZ lies in the interval
[

1
16 , 1

4

]

. Thus we only have
to search for a solution whose absolute value lies within this interval. There is only
one such solution in this case, which is given by z0 ≈ 0.0982673. Expanding SZ22

and SZ around this singularity and applying Bender’s formula yields an asymptotic
expression for the expected product of σ- and Z-index:

E(σnZn) ∼ (0.92565) · (2.54408)n.

Of course, the same way of reasoning can also be used to determine the other expected
values E(σnρn) and E(Znρn) as well as the variances of all our random variables. All
details (which are mostly analogous to the example) are given in [24]. Therefore, we
only list all the asymptotics in Table 2.1.

Now we can turn to the correlation coefficients. We see that

r(σn, Zn) ∼ (−1.01706) · (0.99405)n,

r(σn, ρn) ∼ (1.05088) · (0.99023)n,

r(Zn, ρn) ∼ (−1.08924) · (0.97853)n,

and conclude that the σ and ρ-index are positively correlated, whereas they are both
negatively correlated to the Z-index. The correlation coefficient tends to zero as
n → ∞, but very slowly. The constant factor as well as the basis of the exponential
term can be used as a measure for the correlation. So we may claim that the closest
correlation of the three is between the σ- and the Z-index.

3. Correlation to the Wiener index. The Wiener index has a different re-
cursive structure than the indices discussed in the preceding chapter, and its growth
is not exponential. Entringer et al. [4] were able to show that the average Wiener
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E(σn)
√

3
(

27
16

)n−1 ∼ (1.02640) · (1.6875)n

E(Zn)

√

65−
√

13
78

(

35+13
√

13
54

)n

∼ (0.88719) · (1.51615)n

E(ρn) 16
3
√

15

(

25
16

)n ∼ (1.37706) · (1.5625)n

E(σnZn) (0.92565) · (2.54408)n

E(σnρn) (1.36653) · (2.66477)n

E(Znρn) 1
116

√

5(128985+57683
√

5)
58 ·

(

8(7 − 3
√

5)
)n ∼ (1.28557) · (2.33437)n

Var(σn) (1.03802) · (2.86096)n

Var(Zn) (0.77227) · (2.31549)n

Var(ρn) 64
√

14
147 ·

(

81
32

)n ∼ (1.79509) · (2.53125)n

Table 2.1

Asymptotic formulas for expected values and variances.

index is asymptotically K · n5/2 for a simply generated family of trees, where K is a
constant depending on the specific family. For rooted ordered trees, the constant K

is
√

π
4 . We repeat their argument here since it will be needed for the computation of

the covariances.
We are first going to consider an auxiliary value, D(T ), denoting the sum of the dis-
tances of all vertices from the root. This is also known as the total height [21] or
internal path length [9] of the tree T . Then, we set

D(z) :=
∑

T

D(T )z|T |,

where the sum runs over all rooted ordered trees T again. The value D(T ) can be
calculated recursively from the branches of T : in fact, if T1, . . . , Tk are the branches
of T , we have

D(T ) =

k
∑

i=1

D(Ti) + |T | − 1, (3.1)

where |T | is the size (number of vertices) of T . In terms of D(z), this gives

D(z) =
∑

T

D(T )z|T |

=
∑

k≥0

k
∑

i=1

∑

T1

∑

T2

. . .
∑

Tk

D(Ti)z
|T1|+...|Tk|+1 +

∑

T

(|T | − 1)z|T |

= z
∑

k≥0

kD(z)T (z)k−1 + zT ′(z) − T (z)

=
zD(z)

(1 − T (z))2
+ zT ′(z) − T (z).

(3.2)

Now, the Wiener index of a tree can also be determined recursively from its branches:

W (T ) = D(T ) +

k
∑

i=1

W (Ti) +
∑

i6=j

(

D(Ti) + |Ti|
)

|Tj|, (3.3)
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where the last sum goes over all k(k − 1) pairs of different branches. Thus, if

W (z) :=
∑

T

W (T )z|T |,

we have

W (z) = D(z) +
zW (z)

(1 − T (z))2
+

2z2T ′(z)(D(z) + zT ′(z))

(1 − T (z))3
. (3.4)

It turns out that W (z) = z2

(1−4z)2 , giving an average Wiener index of asymptoti-

cally
√

π
4 n5/2. Now, we introduce various generating functions for the correlation of

D(T ), W (T ) and σ(T ): let DS1, DS2, WS1 and WS2 be the generating functions for
the product of D(T ) resp. W (T ) with the number of independent vertex subsets
containing resp. not containing the root. In analogy to the functional equations for
D(z) and W (z) we obtain a system of linear equations – for example, we have

DS1(z) =
∑

T

D(T )σ1(T )z|T |

=
∑

k≥0

∑

T1

. . .
∑

Tk





k
∑

i=1

D(Ti)

k
∏

j=1

σ2(Tj)



 z|T1|+...+|Tk|+1

+
∑

T

(|T | − 1)σ1(T )z|T |

=
∑

k≥0

∑

T1

. . .
∑

Tk





k
∑

i=1

D(Ti)σ2(Ti)
∏

j 6=i

σ2(Tj)



 z|T1|+...+|Tk|+1

+ zS′
1(z) − S1(z)

= z
∑

k≥0

k DS2(z)S2(z)k−1 + zS′
1(z) − S1(z)

=
z DS2(z)

(1 − S2(z))2
+ zS′

1(z) − S1(z).

Altogether, we obtain

DS1(z) =
z DS2(z)

(1 − S2(z))2
+ zS′

1(z) − S1(z),

DS2(z) =
z(DS1(z) + DS2(z))

(1 − S1(z) − S2(z))2
+ zS′

2(z) − S2(z),

WS1(z) = DS1(z) +
z WS2(z)

(1 − S2(z))2
+

2z2S′
2(z)(DS2(z) + zS′

2(z))

(1 − S2(z))3
,

WS2(z) = DS2(z) +
z(WS1(z) + WS2(z))

(1 − S1(z) − S2(z))2

+
2z(zS′

1(z) + zS′
2(z))(DS1(z) + DS2(z) + zS′

1(z) + zS′
2(z))

(1 − S1(z) − S2(z))3
.

(3.5)

We solve this system for WS1 and WS2 (which can be done explicitly in terms of S1

and S2 since the system is linear) and write the total generating function WS(z) =
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WS1(z) + WS2(z) in terms of S1, S2, S
′
1, S

′
2. Then we make use of the functional

equations for S1 and S2 and replace S1(z) by z
1−S2(z) . Implicit differentiation of the

equation S2(z)3 − 2S2(z)2 + S2(z) − z = 0 yields

S′
2(z) =

1

3S2(z)2 − 4S2(z) + 1
,

so WS can be written in terms of S2 and z only. In fact, we have

WS(z) =
N

(1 − 3S2(z))2(1 − S2(z))3(S2(z)2 + S2(z)3 − z)2
,

where N is a polynomial in S2 and z. The denominator only vanishes at 0 and at the
dominating singularity 4

27 of S2. Therefore, we only have to expand WS around 4
27 :

WS(z) ∼ 5

81
(

1 − 27z
4

)2 ,

which gives us the expected value E(Wnσn) by means of the Flajolet-Odlyzko singu-
larity analysis [5] once again:

E(Wnσn) ∼ 20
√

π

81
n5/2

(

27

16

)n

.

It was shown by Janson [9] that the variance of the Wiener index for rooted ordered
trees is given asymptotically by

Var(Wn) ∼ 16 − 5π

80
n5,

and thus the correlation coefficient of Wn and σn is

r(Wn, σn) ∼ (−0.27891) · (0.99767)n.

Similarly, we obtain

r(Wn, Zn) ∼ (0.40351) · (0.99637)n,

r(Wn, ρn) ∼ (−1.78357) · (0.98209)n.

Again, the calculational details are given in [24].

4. Some numerical values and their interpretation. We have seen that in
all the considered cases, the correlation coefficient was asymptotically of the form

α · βn

for some constants α and β. The significance of these constants can be roughly
described as follows:

• A large value of α usually means a higher correlation for trees with few
vertices.

• A large value of β means that the correlation decreases very slowly – thus, it
is a measure for the correlation of the indices when the number of vertices is
large.
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When the correlation of σ, Z and ρ was considered, β depended on the growth of both
indices. If the correlation was negative in these cases (which it was except for the
correlation of σ- and ρ-index), the exact asymptotics of the expected value of their
product were redundant for the asymptotics of the correlation coefficient. So, in order
to exploit this piece of information as well, one should separately consider normalized
values of the form

E(XnYn)
√

Var(Xn)Var(Yn)
and

E(Xn)E(Yn)
√

Var(Xn)Var(Yn)
,

where Xn and Yn are X- and Y -indices of random trees.
Further problems arise in the study of the Wiener index. Since the Wiener index only
grows polynomially, β only depends on the expected value and variance of the second
index. Again, one should also consider the coefficients given above separately. We
have seen that they are of the same asymptotic order except from the constant factors,
so one might use their quotient as a correlation measure as well. The following table
gives the asymptotic behavior of these coefficients and their quotient:

Indices E(XnYn)√
Var(Xn) Var(Yn)

E(Xn)E(Yn)√
Var(Xn) Var(Yn)

E(XnYn)
E(Xn)E(Yn)

σ – Z (1.03386) · (0.988448)n (1.01706) · (0.99405)n (1.01652) · (0.99436)n

σ – ρ (1.05088) · (0.99023)n (1.08694) · (0.97981)n (0.96683) · (1.01064)n

Z – ρ (1.14617) · (0.96423)n (1.08924) · (0.97853)n (1.05227) · (0.98539)n

σ – W (7.10957) · (0.99767)n (7.38848) · (0.99767)n 0.96225

Z – W (7.80764) · (0.99637)n (7.40413) · (0.99637)n 1.05450

ρ – W (6.12924) · (0.98209)n (7.91281) · (0.98209)n 0.77460

Table 4.1

E(XnYn) and E(Xn)E(Yn) separated.

In any case, our approach will only yield us quantitative correlation measures; quali-
tative information on the correlation structure is not provided.

One can calculate the exact correlation coefficients for small values of n quite
easily from the functional equations. In Table 4.2, some numerical examples are given
– note that the correlation coefficient only makes sense for n ≥ 4: for n ≤ 3, all trees
are isomorphic.

We see that the correlation coefficient between σ- and Z-index is largest among
those investigated in section 2. Likewise, the correlation to the Wiener index is
highest for the ρ-index. This observation agrees with the asymptotic results of the
preceding sections. The following plots (Fig. 4.1) suggest that the correlation is in
fact very strong in both cases (much stronger than for the other pairs, which is quite
remarkable), but not entirely linear, which is clear from the exponential growth of σ-,
Z- and ρ-index (this phenomenon will be discussed in detail in the following section).
The plots show the values of all trees with 12 vertices.

5. Other correlation measures. Unfortunately, there are some drawbacks in
our approach. Apart from the obvious fact that asymptotic correlations might only
hold for a considerably large number of vertices, the correlation coefficient principally
measures linear dependence. But since the σ−, Z− and ρ− indices grow exponentially
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n r(σn, Zn) r(σn, ρn) r(Zn, ρn) r(σn, Wn) r(Zn, Wn) r(ρn, Wn)

4 -1.000000 1.000000 -1.000000 -1.000000 1.000000 -1.000000

5 -0.991189 0.971494 -0.994334 -0.923381 0.966092 -0.988064

6 -0.970054 0.947369 -0.955649 -0.870581 0.918482 -0.977131

7 -0.959741 0.926080 -0.926321 -0.829908 0.883867 -0.966673

8 -0.950801 0.907123 -0.898558 -0.796570 0.853248 -0.956356

9 -0.943296 0.890225 -0.873371 -0.768197 0.826459 -0.945962

10 -0.936479 0.875159 -0.850213 -0.743446 0.802492 -0.935353

11 -0.930116 0.861703 -0.828817 -0.721477 0.780828 -0.924449

12 -0.924048 0.849641 -0.808906 -0.701723 0.761060 -0.913214

13 -0.918187 0.838772 -0.790246 -0.683782 0.742891 -0.901641

14 -0.912479 0.828909 -0.772640 -0.667357 0.726088 -0.889750

15 -0.906888 0.819890 -0.755923 -0.652218 0.710467 -0.877574

20 -0.880077 0.783214 -0.681768 -0.590624 0.645700 -0.814057

25 -0.854498 0.753917 -0.617683 -0.544547 0.596088 -0.750155

Table 4.2

Correlation coefficients for rooted ordered trees, n ≤ 25.
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Fig. 4.1. From top to bottom: σ- and Z-index, σ- and ρ-index, Z- and ρ-index, σ- and Wiener

index, Z- and Wiener index, ρ- and Wiener index.
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Fig. 5.1. σ- and Z-index after logarithmic transformation.

with different growth rates, the dependence cannot be completely linear. Thus, it
might be reasonable to study the correlation of their logarithms instead. The problem
with that approach is the fact that generating function methods as presented in this
paper will not be applicable any longer. The corresponding plot for the correlation of
log σn and log Zn (the random variables are rescaled in such a way that they are of
equal order now!) suggests that it is reasonable to use a logarithmic transformation
– it shows an almost linear correspondence (Fig. 5.1). This suggests that a sharp
inequality of the form

fn(σ(T )) ≤ Z(T ) ≤ gn(σ(T )) (5.1)

should hold for all trees T on n vertices, where fn(x), gn(x) behave like negative
powers of x, i.e. fn(x) ∼ a1(n)x−c1 , gn(x) ∼ a2(n)x−c2 . However, it is not difficult
to construct discordant pairs of trees, i.e. two trees T1, T2 such that Z(T1) > Z(T2)
and σ(T1) > σ(T2).

This leads us to an alternative method of measuring correlation – the use of rank
statistics (cf. [10, 14]): given two indices X and Y , we assign ranks xi and yi to all
trees T1, . . . , Ts on n vertices such that xi and yi range from 1 to s and xi < xj if
X(Ti) < X(Tj) resp. yi < yj if Y (Ti) < Y (Tj). Then, a correlation measure is given
by Spearman’s ρ:

ρS(Xn, Yn) = 1 − 6
∑s

i=1(xi − yi)
2

s3 − s
(5.2)

which ranges from −1 (perfect negative correlation) to 1 (perfect positive correlation).
Unfortunately, even though rank statistics are an interesting means of measuring the
statistical dependence of random variables, it seems virtually impossible to apply them
to our problem, since generating function methods are not apt to the treatment of
ranks. It seems that rank statistics can only be applied to our problem if the number
of vertices is considerably small, so that everything can be calculated explicitly.

Another problem with them is the occurrence of ties – all the random variables
under consideration are discrete, and the number of trees grows larger than the maxi-
mal index in all our cases, so ties (i.e. several non-isomorphic trees of the same index)
are inevitable. There are statistical methods to cope with this problem (cf. [10, 14])
– usually, if ties occur, the average rank is allotted to all tied elements. This method
is used in the examples at the end of this section.

The problem of ties leads us to our final remark. The methods of this paper easily
generalize to all simply generated families of trees. However, one would like to apply
them to unordered rooted trees or trees (so one can take isomorphisms into account).
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This should be doable (in essentially the same way as in [25]), but is certainly requires
very lengthy calculations.

In the following table, correlation coefficients for trees with ≤ 14 vertices are
given. If we compare them to the values of Table 4.2, we see that the correlation
coefficients for rooted ordered trees provide suitable estimates.

n r(σn, Zn) r(σn, ρn) r(Zn, ρn) r(σn, Wn) r(Zn, Wn) r(ρn, Wn)

4 -1.000000 1.000000 -1.000000 -1.000000 1.000000 -1.000000

5 -0.995871 0.986241 -0.997176 -0.960769 0.981981 -0.993399

6 -0.977051 0.969611 -0.982970 -0.901473 0.953231 -0.977255

7 -0.955329 0.959254 -0.943865 -0.863896 0.911843 -0.959471

8 -0.930868 0.947142 -0.918181 -0.819996 0.886845 -0.940935

9 -0.908594 0.932074 -0.869200 -0.778345 0.841803 -0.91815

10 -0.890714 0.920543 -0.836300 -0.748034 0.816189 -0.899454

11 -0.877343 0.903475 -0.797497 -0.714065 0.782806 -0.879018

12 -0.869047 0.889422 -0.767693 -0.689129 0.758290 -0.860836

13 -0.862946 0.872456 -0.739304 -0.663493 0.732342 -0.843721

14 -0.859211 0.857532 -0.715078 -0.642464 0.710476 -0.827013

Table 5.1

Correlation coefficients for trees, n ≤ 14.

Finally, we examine the rank correlation. The table shows the numerical values
of Spearman’s ρ for all trees with ≤ 14 vertices.

n ρS(σn, Zn) ρS(σn, ρn) ρS(Zn, ρn) ρS(σn, Wn) ρS(Zn, Wn) ρS(ρn, Wn)

4 -1.000000 1.000000 -1.000000 -1.000000 1.000000 -1.000000

5 -1.000000 1.000000 -1.000000 -1.000000 1.000000 -1.000000

6 -1.000000 0.942857 -0.942857 -0.942857 0.942857 -1.000000

7 -1.000000 0.918182 -0.918182 -0.877273 0.886364 -0.986364

8 -0.994071 0.881670 -0.876729 -0.867836 0.870800 -0.996789

9 -0.996126 0.854591 -0.852798 -0.805273 0.809349 -0.990171

10 -0.997048 0.832577 -0.834320 -0.774514 0.777381 -0.992314

11 -0.997392 0.811737 -0.814267 -0.746093 0.749423 -0.990921

12 -0.997471 0.796388 -0.801514 -0.724382 0.729450 -0.990146

13 -0.997421 0.781437 -0.787808 -0.697123 0.703244 -0.987169

14 -0.997383 0.770002 -0.777472 -0.675956 0.682617 -0.984820

Table 5.2

Spearman’s ρ for n ≤ 14.

Again, we observe the striking correspondence between σ- and Z-index resp. ρ-
and Wiener index. It seems to be a challenging graph-theoretical problem to explain
this phenomenon.
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