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Abstract. In this paper a survey on tries, a contention resolution algorithm, their sim-
ilarities, dissimilarities, and their mathematical treatment, will be given. It has already
been mentioned in some papers that tries and contention trees follow one common sto-
chastic model, but still they are frequently treated as separate objects in the literature.
Hence the aim of the current work is to contribute to the unification of the various results
in that area and to exhibit the employed methods, which involve, among others, analytic
poissonization/depoissonization and the Mellin transform. For the sake of the example, a
new parameter in contention trees, the number of terminal frames, will be studied.

1. Introduction

1.1. Tries. We will treat two different kinds of combinatorial objects (which turn out to
be almost isomorphic) in this paper, the first of which are tries. Tries are a very popular
data structure for words over a finite alphabet, and they have also been treated quite
extensively from a mathematical point of view. Let us start with a brief description.

Given a set of n strings over a finite alphabet with m letters (the most typical case
being m = 2), a trie is built up in the following way: a string is stored in an external node,
and a path from the root to an external node represents the shortest prefix of the string
that is not a prefix of any other string. Each outgoing edge at an internal node represents
one letter of the alphabet, so a trie is a special m-ary tree. Figure 1 shows a very simple
example of a binary trie for the strings 000101, 110110, 001010 and 101011. An important
special case is given by the suffix trie, which is built up from the suffixes over a single
string.

000101 001010

101011 110110

Figure 1. A binary trie.
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Tries were first proposed by de la Briandais [3] in the context of information processing;
the name was suggested by Fredkin [12], being part of the word retrieval. Tries are used in
various applications in computer science due to their simplicity and efficiency. Examples
include searching and sorting, fast retrieval (dynamic hashing, see [4, 21]), the IP-addresses
lookup problem [30], polynomial factorization [22], data compression [29] and many oth-
ers. The trie structure is also related to coin-flipping processes, e.g. the leader election
algorithm discussed in [6, 28] (so-called “incomplete tries”—only one branch is pursued).

1.2. Contention Trees. The fundamental problem of multi-user communication is to
serve many different senders, given only a single communication channel. For this purpose,
the classical solution of time-division multiplexing becomes rather inefficient when there
is a large number of senders and each of them is inactive most of the time. A far more
efficient and elegant solution to this problem is given by the ALOHA protocol developed
in the early 1970’s (cf. Abramson [33]), which provides immediate random access to the
channel. If two transmitters are active at the same time, a collision occurs, and both
transmitters try again later after some random time period.

The main disadvantage of the ALOHA protocol is its rather poor performance if the
channel occupancy is above a certain level—in fact, the protocol is unstable: if the senders
submit their messages according to a Poisson process, the backlog tends to ∞ with prob-
ability 1. One strategy to deal with this problem is the contention tree algorithm due
to Capetanakis, Tsybakov and Mikhailov [2, 33]. Suppose that a large number n of sub-
mitters contending for channel access is given; each of them receives ternary feedback on
the outcome during a particular contention slot: either zero (empty slot), one (successful
transmission) or more than one (collision) transmitters have been broadcasting during this
slot.

For some given nodal degree m, we let m consecutive slots be grouped into a contention
frame. During the first contention frame, each transmitter picks a slot at random—usually,
the probabilities are equal for all slots, but they may also been given by values p1, . . . , pm.
If a collision occurs at some slot, a new frame is opened for the transmitters who made use
of that slot. This procedure is repeated recursively (the algorithm is applied to each of the
new frames, one after the other), inducing a tree structure as shown in Figure 2 (with 13
contenders and m = 3).

5 6 2

2 3 0

1 1 0 0 1 2

1 0 1

1

2 0 01 1 4

0 3 1

1 1 1

0 1

Figure 2. A contention tree
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There are several variants of the contention tree algorithm, such as the contention stack
algorithm due to Tsybakov and Vvedenskaya [34] and the Gallagher-Tsybakov-Mikhailov
algorithm, where the partition of the contenders is not based on a random process, but on
the time at which a user became active [13].

In many papers, the contention tree algorithm is mentioned to be an application of
the trie structure [15, 16, 25] (which is plain to see and will be exhibited in the following
section); however, the algorithm is still frequently treated separately, without making use
of the existing results for tries. One major aim of this paper is to enlarge the general
awareness for the fact that tries and contention trees are two manifestations of one common
underlying model.

2. Common parameters, similarities and dissimilarities

Now, we want to exhibit the fact that the contention tree algorithm and tries follow
one common stochastic model. Indeed, we can identify each contender in our contention
resolution algorithm with a word: simply take the sequence of slots that is chosen by the
contender (which is of course a word over an alphabet of m letters). Then, the position
in the contention tree where the contender is finally able to successfully submit their data
is exactly the position in the trie where the associated word is stored. In Figure 3, an
example of a ternary contention tree and its associated trie is shown. Note that a trie
is an m-ary tree whose leaves are regarded as external nodes, where the data are stored,
whereas a contention tree only consists of internal nodes (it would be possible, though,
to associate an additional external node to each contender). This fact can result in some
minor differences for parameters in the two models.

3 1 2

2 0 ` 1 1 0

0 1 1

1

001 002

02

1

2120

Figure 3. A contention tree and its associated trie

In view of the described correspondence, a common stochastic model can be applied to
tries and contention trees: we assume that a contender picks the i-th slot with a probability
pi, or equivalently that the i-th letter of our alphabet appears with probability pi (

∑m
i=1 pi =

1). This is known as the Bernoulli model. As already mentioned, it is usually reasonable
to assume that p1 = p2 = . . . = pm = 1

m
(the so-called symmetric case) in the contention

tree algorithm, since the purpose of the algorithm is to split the group of contenders as
effectively as possible. However, there are slightly modified algorithms which are more
efficient in the asymmetric case, and it is also quite plausible that the frequencies of the
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letters of our alphabet are all different. Yet the symmetric case is generally easier to
analyze (see for instance [20], where the specific difficulties of the asymmetric case are
explained), and there are also parameters where the behaviors differ in the symmetric and
the asymmetric case.

The case m = 2 is certainly the most interesting and most important one, especially in
the case of tries in view of their applications in computer science. Hence, many papers deal
exclusively with this special case, but there are also generalizations to the general m-ary
case (see [32], for instance).

There is a great variety of parameters that are of interest for tries and/or contention
trees. Among them, the most important parameter for the performance of contention
trees is probably the number of contention frames (equivalently, the size of a trie), whose
average behavior has been studied in several papers. The following formula has been given
by Janssen and de Jong [18]:

Theorem 1 (Janssen and de Jong [18]). If Ln denotes the average number of frames for
a given number n of transmitters, the asymptotic behavior of Ln for n → ∞ is given by

(1)
Ln

n
=

1

log m
+ Φm(logm n) + O(1),

where Φm is a periodic function (of very small amplitude).

Their proof uses an explicit sum formula for Ln:

Ln =
∞
∑

d=0

md
(

1 −
(

1 − m−d
)n)

− n
(

1 − m−d
)n−1

,

whose asymptotics can be determined by means of the Poisson sum formula (in Section 3,
we will perform a similar analysis, but employ the Mellin transform for this purpose).
However, the asymptotic behavior shown in formula (1) had already been given before by
Flajolet and Jacquet [7] (in the case m = 2), and they attribute the analysis to Knuth [21].

Another common approach for problems of this kind is analytic poissonization and de-
poissonization: one considers the Poisson transform L(x) = e−x

∑∞

n=0
Ln

n!
xn, which satisfies

a nice functional equation:

L(mx) = mL(x) + 1 − (1 + mx)e−mx.

It will be shown in Section 3 how equations of this kind can be derived. Now it follows
from general theorems (see the excellent survey article of Jacquet and Szpankowski [17])
that Ln ∼ L(n), which allows one to determine the asymptotic behavior. Indeed, in a
recent paper, Györfi and Győri [14] investigated the asymptotic difference between Ln and
its Poisson transform L(n) in detail to obtain more precise information on the behavior of
Ln depending on n.

However, even more is known—Jacquet and Régnier [16] have already shown in 1988
(in the case of symmetric or unsymmetric binary tries) that the distribution of the size of
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a trie tends to a normal distribution, and that the moments converge to the corresponding
moments for the normal distribution:

Theorem 2 (Jacquet and Régnier [16]). If Sn is the (random) size of a trie built from n

strings, then the distribution of the normalized random variable tends to a normal distri-
bution:

Sn − E(Sn)
√

V(Sn)

d
→ N(0, 1).

The moments also converge, and the convergence rate is O(nǫ−1/2) for arbitrary ǫ > 0.

Another parameter of interest is the average number of levels (attempts) a random
contender requires for successful transmission—this parameter is also known as the depth
(distance from the root to a randomly selected external node, see [15] for instance) and
is related to the external path length (the sum of all distances from the external nodes
to the root). In the case of tries, this gives the average time for searching a word in the
trie. However, it is not true that the average number of levels a contender needs is also a
measure for the average time that a contender has to wait until the message can be sent:
note that all frames to the left of a certain frame in a contention tree are executed before
it. Hence, in order to determine the average waiting time, one needs another parameter
that has no immediate interpretation for tries. It seems that, unlike the well-studied depth,
the average waiting time of a contender has not been investigated as extensively yet; its
analysis should follow the same lines though. For the average number of attempts that a
contender requires, Janssen and de Jong provide the formula

dn = logm n + 1
2

+ γ
log m

+ Ψm(logm n) + O(n−1),

where Ψm is a periodic function and γ denotes the Euler-Mascheroni constant. Again,
limiting distributions (for the depth, but apparently not for the average waiting time, see
above) have been studied in the binary case, see [15, 27].

A very similar parameter is the number of tree levels required to complete the whole
algorithm (i.e. the largest number of levels any contender needs). Again, this should not
be confused with the time the algorithm takes. In the language of trees (and, in particular,
tries), this is known as the height (longest path from the root to a leaf).

These are just three examples of important parameters in the analysis of tries and
contention trees. As Hwang, Nicodème, Park and Szpankowski [25, 26] point out, these
and other important parameters can be expressed in terms of the profile of tries. The
internal/external profile of the tree is defined as the total number of internal/external
nodes at a given level, i.e. the random variables In,k and Bn,k are given by the number
of internal/external nodes at level k in a random trie (where the root is at level 0). Im-
portant parameters that can be expressed in terms of the profile include, apart from the
aforementioned,

• (internal) path length, i.e. the sum of the distances between the internal nodes and
the root, which is given by

∑

j jIn,j,
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• shortest path from the root to an external node: min{j : Bn,j > 0}, and
• fill-up level (largest full level): max{j : In,j = mj}.

Hence it is not exaggerated to state that the profile provides an almost complete char-
acterization of the shape of a trie. The main result for the profile, which follows from a
quite intricate analysis, can be roughly stated as follows: the distributions of the internal
and external profile converge (in distribution) to a Gaussian distribution, provided that
the variance tends to infinity (which is the case if limn→∞

k
log n

lies within a certain range);

otherwise, it tends to a Poisson distribution or to 0 (the latter being the case for very large
or small k; the former case occurs if the variance is of order Θ(1), i.e. bounded above and
below by constants). For details on the distributions and on the asymptotics of the mean
and variance, see the papers [25] and [26].

3. Analysis of terminal frames

In order to briefly demonstrate some of the techniques that are applied in the analysis
of parameters of contention trees and tries, we investigate the number of terminal frames
in a contention tree; this gives us information about the proportion of those frames that are
merely used for splitting purposes compared to those in which the transmission actually
occurs. There are two plausible ways to define “terminal”: we call a contention frame

• terminal of the first type if all contenders of the frame can transmit successfully;
equivalently, no splitting occurs at such a frame any more,

• terminal of the second type if at least one successful transmission is performed at
this frame.

In terms of tries, these are the number of internal nodes whose children are all external
nodes and the number of internal nodes with at least one external node among the children
respectively. We are going to provide explicit formulas for the average number of termi-
nal frames of both types as well as asymptotic expressions—not surprisingly, oscillation
phenomena (as for the size Ln of contention trees, for instance) can be observed.

3.1. Explicit formulas.

Proposition 3. The average number of terminal frames of the first type, given the number
n of contenders, is

tn =
∞
∑

d=0

md

n
∑

k=2

(

n

k

)

m−dk(1 − m−d)n−k(m)km
−k.

The average number of terminal frames of the second type, given the number n of con-
tenders, is

Tn = n −

∞
∑

d=0

md

m
∑

l=2

(−1)l(m)l

(

n

l

)

m−(d+1)l(1 − lm−(d+1))n−l.
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Proof. We apply the probabilistic model that is also used by Janssen and de Jong [18]: we
think of the contention tree as an infinite, complete m-ary tree. At the first level, each
contender chooses one of the m slots at random and proceeds to the corresponding node of
the next level; this process is repeated for each subsequent level. Therefore, the contenders
are randomly distributed among the md nodes of the d-th level. The probability that k of
n contenders are assigned to some level-d node is therefore given by

(

n

k

)

m−dk(1 − m−d)n−k.

The first time contenders pick a slot which they don’t have to share is the time when their
transmission is successfully completed.

Now consider tn first. Obviously, the probability that a contention frame with k con-
tenders is a terminal frame of the first type is given by

(m)km
−k,

where (m)k = m(m − 1) . . . (m − k + 1) denotes the falling factorial, since there are (m)k

among the mk possibilities for which all contenders occupy their own slot. Thus, we have
a formula for the probability that a frame at level d is a terminal frame of the first type:

n
∑

k=2

(

n

k

)

m−dk(1 − m−d)n−k(m)km
−k.

Note that we have to sum over k ≥ 2 since a contention frame is only generated when there
are at least two colliding contenders. Summing over all frames now yields the formula for
tn. In a similar manner, we note that the probability that at least l (l ≥ 2) contenders
have successful transmission at a certain level-d frame is given by

(

n

l

)

(m)lm
−(d+1)l(1 − lm−(d+1))n−l.

By the inclusion-exclusion principle, we obtain the formula for Tn. �

The presented approach works well if one is only interested in expected values. How-
ever, if higher moments or limit distributions are requested, it is much more advantageous
to use a recursive approach and generating functions instead, as exhibited in the following
section and parts of section 3.3.

3.2. Functional equations and the special case m = 2. Each contender transmits
successfully at some terminal frame of the second type. If this contender is not the only
one who transmits at this frame, then it is also a terminal frame of the first type if m = 2.
In this case there are two slots of the frame occupied by single contenders. This shows
that the total number of contenders must equal the sum of the total number of terminal
frames of the first kind and the total number of terminal frames of the second kind, i.e.

tn + Tn = n
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if m = 2. This is not the only interesting feature of the case m = 2. We are going to show
that the exponential generating functions of tn and Tn satisfy specifically nice functional
equations. First, we note that the formulas of Proposition 3 reduce to

tn =
∞
∑

d=0

2−d−1

(

n

2

)

(1 − 2−d)n−2

and Tn = n− tn. Now, we define t0 = t1 = T0 = 0 and T1 = 1 and let t(x) = e−x
∑∞

n=0
tn
n!

xn

and T (x) = e−x
∑∞

n=0
Tn

n!
xn be the Poisson transforms of tn and Tn respectively. From the

identity tn + Tn = n, it is clear that t(x) + T (x) = x. Now, we insert the formula for tn to
obtain

t(x) = e−x

∞
∑

n=2

∞
∑

d=0

2−d−1

(

n

2

)

(1 − 2−d)n−2xn

n!
= x2e−x

∞
∑

n=2

∞
∑

d=0

2−d−2 ((1 − 2−d)x)n−2

(n − 2)!

=
x2e−x

4

∞
∑

d=0

2−d exp((1 − 2−d)x) =
x2

4

∞
∑

d=0

2−d exp(−2−dx).

Now, replacing x by 2x yields

t(2x) = x2

∞
∑

d=0

2−d exp(−2−d+1x) = x2

∞
∑

d=−1

2−d−1 exp(−2−dx)

= x2e−2x +
x2

2

∞
∑

d=0

2−d exp(−2−dx) = x2e−2x + 2t(x).

As a corollary, we have T (2x) = −x2e−2x + 2T (x). These functional equations reflect the
recursive structure of contention trees. A simple combinatorial argument shows that we
have

tn = 2−n

n
∑

k=0

(

n

k

)

(tk + tn−k) +
δn2

2
,

from which the functional equation follows easily as well. Indeed, the probability that the
n contenders split into one group of k contenders and another group of n−k contenders in
the first step is exactly

(

n
k

)

2−n; afterwards, we have an average of tk + tn−k terminal frames

of the first type, except for the case n = 2, where we have to add 1 with probability 1
2
.

Similar arguments show that in the general case, there is always a recursion of the form

tn = m−n
∑

k1+k2+...+km=n

(

n

k1, k2, . . . , km

)

(tk1
+ tk2

+ . . . + tkm) + rn

and thus an analytic function fm(x) such that

t(mx) = mt(x) + fm(x).

This kind of linear additive functional equation is typical for the probabilistic models of
tries, contention trees and many similar structures, and it has been studied extensively (see
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for example [5, 31]). The order of the steps can be reversed—frequently, explicit formulas
are deduced from functional equations by iteration, e.g.

t(x) = x2e−x

4
+ 2t

(

x
2

)

= x2e−x

4
+ x2e−x/2

8
+ 4t

(

x
4

)

+ . . .

The behavior of the sum
∑∞

d=0 2−d exp(−2−dx) that appears in the explicit formula for
t(x) can be determined by means of the Mellin transform (see the papers of Flajolet et
al. [8, 9, 10, 11] for various applications): the Mellin transform is always particularly
useful when one is dealing with sums of the type g(x) =

∑

n≥1 λnf(µnx), since the Mellin

transforms f ∗(s) =
∫∞

0
xs−1f(x) dx and g∗(s) are connected via

g∗(s) =
∑

n≥1

λnµ
−s
n f ∗(s).

In our case, the Mellin transform of e−x is given by Γ(s), and thus the transform of the
sum we are interested in is

∞
∑

d=0

2−d 2ds Γ(s) =
Γ(s)

1 − 2s−1
.

Using the Mellin inversion formula, we have

∞
∑

d=0

2−d exp(−2−dx) =
1

2πi

∫ 1/2+i∞

1/2−i∞

Γ(s)

1 − 2s−1
x−s ds.

Shifting the path of integration to the right and collecting residues at the points 1 + 2πia
log 2

(a ∈ Z), we obtain

∞
∑

d=0

2−d exp(−2−dx) =
1

x log 2

∞
∑

a=−∞

exp(−2πia log2 x)Γ

(

1 +
2πia

log m

)

+ O(x−2).

Finally, from general depoissonization theorems [17], we find that

tn = t(n) + o(n) =
n

4 log 2

∞
∑

a=−∞

exp(−2πia log2 n)Γ

(

1 +
2πia

log m

)

+ o(n).

The function that is represented by the Fourier series

F (x) =
∞
∑

a=−∞

Γ

(

1 +
2πia

log m

)

exp(−2πiax)

is periodic, and the non-constant terms yield a function of very small amplitude—compare
the formulas of Janssen and de Jong given in Theorem 1.
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3.3. Asymptotic evaluation. In a similar way, the Mellin transform can be used to
determine the asymptotic behavior of the quantities tn and Tn from the explicit formulas:
for this purpose, we study the infinite sum

∞
∑

d=0

m−(k−1)d(1 − αm−d)n−k,

where 0 < α ≤ 1 and k,m are fixed. We are going to show that it behaves, apart from

an oscillatory term, like Γ(k−1)
log m

(α(n − k))−(k−1). For this purpose, we replace 1 − αm−d by

exp(−αm−d) and estimate the error. Fix some positive ǫ < 1
k+1

. Then, in the case that

d ≤ (1 − ǫ) logm(n), we have m−d ≥ nǫ−1 and thus

(1 − αm−d)n−k ≤ exp(−αm−d(n − k)) ≤ exp(−αnǫ−1(n − k)),

which shows that the contribution of the terms with d ≤ (1 − ǫ) logm(n) decreases with

exp(−nǫ). On the other hand, we make use of the inequality exp(−x) − (1 − x) ≤ x2

2
for

positive x to show that
∑

d>(1−ǫ) logm(n)

m−(k−1)d
(

exp(−α(n − k)m−d) − (1 − αm−d)n−k
)

≤
∑

d>(1−ǫ) logm(n)

m−(k−1)d(n − k)
(

exp(−αm−d) − (1 − αm−d)
)

≤
∑

d>(1−ǫ) logm(n)

m−(k−1)d(n − k)
α2m−2d

2

≪ nm−(k+1)(1−ǫ) logm(n) = n−k+ǫ(k+1).

Now we consider the behavior of
∞
∑

d=0

m−(k−1)d exp(−αm−d(n − k)).

Using the Mellin transform again (alternatively, the Poisson summation formula could also
be applied), we obtain

∞
∑

d=0

m−(k−1)d exp(−αm−d(n − k))

=
1

log m
(α(n − k))−(k−1)

∞
∑

a=−∞

exp(−2πia logm(α(n − k)))Γ

(

k − 1 +
2πia

log m

)

+ O(n−k).

Altogether, we obtain the following asymptotic formulas for tn and Tn:

Proposition 4. The average number of terminal frames of the first type is given by

tn =
n

log m

m
∑

k=2

(

m

k

)

m−k

∞
∑

a=−∞

exp (−2πia logm(n − k)) Γ

(

k − 1 +
2πia

log m

)

+ o(n).
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Note that only the summands up to k = m are necessary, since (m)k = 0 for k > m.
Analogously, we have

Proposition 5. The average number of terminal frames of the second type is given by

Tn = n

(

1 −
1

m log m

m
∑

l=2

(−1)l

ll−1

(

m

l

)

∞
∑

a=−∞

exp (−2πia logm(l(n − l))) Γ

(

l − 1 +
2πia

log m

)

)

+ o(n).

Note again that the coefficients of n are not constant, but periodic functions in logm(n).

As mentioned in Section 2, it is also possible to obtain limiting distributions for param-
eters like the size (number of frames); an example of such a result is stated in Theorem 2.
In order to achieve this, one has to consider bivariate generating functions—in the case of
terminal frames, let tn,k be the probability that a contention tree with n contenders has
exactly k terminal frames of the first type and Tn,k the probability that a contention tree
with n contenders has exactly k terminal frames of the second type. In order to obtain a
simpler functional equation, we set t1,0 = T1,0 = 1 and t1,1 = T1,1 = 0. Then, the relevant
generating functions

s(x, z) := e−x
∑

n,k

tn,k
xn

n!
zk

and

S(x, z) := e−x
∑

n,k

Tn,k
xn

n!
zk

satisfy, in view of the recursive structure,

s(x, z) = s
(

x
m

, z
)m

+ (z − 1)e−x
((

x
m

+ 1
)m

− 1 − x
)

and

S(x, z) = zS
(

x
m

, z
)m

− (z − 1)
(

xe−x +
(

S
(

x
m

, z
)

− x
m

e−x/m
)m
)

.

However, to keep the paper short, we won’t perform any analysis with these bivariate
functions.

Finally, we consider the coefficients of the non-oscillating parts in the asymptotic for-
mulas for tn and Tn, namely

a(m) =
1

log m

m
∑

k=2

(

m

k

)

m−k(k − 2)!

and

b(m) = 1 −
1

m log m

m
∑

l=2

(−1)l

ll−1

(

m

l

)

(l − 2)!
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and study their behavior when m is large. The first sum is easily estimated by elementary
means: we divide the range of summation into the three parts [2,m1/3], [m1/3,m1/2+ǫ] and
[m1/2+ǫ,m]. It is not difficult to see that the third part is smaller than any power of m.
For the other parts, we apply Stirling’s formula:
(

m

k

)

m−k(k − 2)! =
1

k(k − 1)

(

1 +
k

2m
+

3k2

8m2
+ . . .

)

exp

(

−
k2

2m
−

k3

6m2
−

k4

12m3
+ . . .

)

.

For k ≤ m1/3, we may expand the exponential in another series and then calculate the
sums; for k ≥ m1/3, we approximate the sum by an integral. Elementary calculations show
that

a(m) =
1

log m

m
∑

k=2

(

m

k

)

m−k(k − 2)! =
1

log m

(

1 −

√

π

2m
+ . . .

)

.

The second sum is alternating, so its asymptotic evaluation is somewhat trickier. We use
the technique of “Rice’s integrals” (cf. Flajolet and Sedgewick [11]) to write the sum as a
complex integral:

m
∑

l=2

(−1)l

ll−1

(

m

l

)

(l − 2)! =
(−1)m−1

2πi

∫ 3/2+i∞

3/2−i∞

m!Γ(s − 1)s−s+1

s(s − 1) . . . (s − m)
ds

=
(−1)m−1

2πi

∫ 3/2+i∞

3/2−i∞

m!Γ(s − m)

ss(s − 1)
ds.

Shifting the path of integration to the line Re s = 1
2

and collecting the residue at 1 yields

m
∑

l=2

(−1)l

ll−1

(

m

l

)

(l − 2)! = m(log m− 1)−
1

2
+ O

(

1

m

)

+
(−1)m−1

2πi

∫ 1/2+i∞

1/2−i∞

m!Γ(s − m)

ss(s − 1)
ds.

Now, we have to deform the contour to a curve surrounding 0 at a radius of 1
log m

(cf. [11]).

Then the contribution of the logarithmic singularity around 0, whose expansion is given
by

(−1)m−1m!Γ(s − m)

ss(s − 1)
=

1

s
− log s + O(1),

is seen to be 1 + O
(

log log m
log m

)

; therefore, the second sum is

m
∑

l=2

(−1)l

ll−1

(

m

l

)

(l − 2)! = m(log m − 1) +
1

2
+ . . . ,

yielding

b(m) =
1

log m
−

1

2m log m
+ . . .

So we see that in both cases the main term tends to n
log m

for large m—which is the main

asymptotic term for the average total number of frames; some specific values are given in
the following table:
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m a(m) b(m) 1
log m

2 0.360674 0.639326 1.442695
3 0.337126 0.578593 0.910239
4 0.321225 0.533504 0.721348
5 0.309375 0.498516 0.621335
10 0.275333 0.398501 0.434294
20 0.245456 0.321580 0.333808
50 0.211946 0.252169 0.255622
100 0.190634 0.215736 0.217147
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15. Philippe Jacquet and Mireille Régnier, Trie partitioning process: limiting distributions, CAAP ’86
(Nice, 1986), Lecture Notes in Comput. Sci., vol. 214, Springer, Berlin, 1986, pp. 196–210.

16. , Normal limiting distribution of the size of tries, Performance ’87 (Brussels, 1987), North-
Holland, Amsterdam, 1988, pp. 209–223.

17. Philippe Jacquet and Wojciech Szpankowski, Analytical de-Poissonization and its applications, Theo-
ret. Comput. Sci. 201 (1998), no. 1-2, 1–62.

18. A.J.E.M. Janssen and M.J.M. de Jong, Analytic properties of contention tree-algorithms, IEEE Trans.
Inform. Theory 46 (2000), no. 6, 2163–2172.

19. Michael A. Kaplan and Eugene Gulko, Analytic properties of multiple-access trees, IEEE Trans. Inform.
Theory 31 (1985), no. 2, 255–263.

20. Peter Kirschenhofer, Helmut Prodinger, and Wojciech Szpankowski, On the variance of the external

path length in a symmetric digital trie, Discrete Appl. Math. 25 (1989), no. 1-2, 129–143, Combinatorics
and complexity (Chicago, IL, 1987).

21. Donald E. Knuth, The art of computer programming. Volume 3, Addison-Wesley Publishing Co., Read-
ing, Mass.-London-Don Mills, Ont., 1973, Sorting and searching, Addison-Wesley Series in Computer
Science and Information Processing.

22. Daniel Lazard, On polynomial factorization, EUROCAM ’82: Proceedings of the European Computer
Algebra Conference on Computer Algebra (London, UK), Springer-Verlag, 1982, pp. 126–134.

23. J.L. Massey, Collision resolution algorithms and random access algorithms, Multi-user communication
systems, CISM Course and Lecture Notes, vol. 265, Springer Verlag, New York, 1981, pp. 73–137.

24. Peter Mathys and Philippe Flajolet, Q-ary collision resolution algorithms in random-access systems

with free or blocked channel access, IEEE Trans. Inform. Theory 31 (1985), no. 2, 217–243.
25. Gahyun Park, Hsien-Kuei Hwang, Pierre Nicodème, and Wojciech Szpankowski, Profiles of tries,

Preprint, 2006.
26. Gahyun Park and Wojciech Szpankowski, Towards a complete characterization of tries, SODA ’05:

Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms (Philadelphia,
PA, USA), Society for Industrial and Applied Mathematics, 2005, pp. 33–42.

27. Boris Pittel, Paths in a random digital tree: limiting distributions, Adv. in Appl. Probab. 18 (1986),
no. 1, 139–155.

28. Helmut Prodinger, How to select a loser, Discrete Math. 120 (1993), no. 1-3, 149–159.
29. Robert Sedgewick, Algorithms, Addison-Wesley Series in Computer Science, Addison-Wesley Publish-

ing Company Advanced Book Program, Reading, MA, 1983.
30. V. Srinivasan and G. Varghese, Fast address lookups using controlled prefix expansion, ACM Trans.

Comput. Syst. 17 (1999), no. 1, 1–40.
31. Wojciech Szpankowski, On a recurrence equation arising in the analysis of conflict resolution algo-

rithms, Comm. Statist. Stochastic Models 3 (1987), no. 1, 89–114.
32. , Some results on V -ary asymmetric tries, J. Algorithms 9 (1988), no. 2, 224–244.
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