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Abstract. We study two graph parameters, namely the number of spanning
forests and the number of connected subgraphs, for self-similar graphs with exactly
two boundary vertices. In both cases, we determine the general behavior for these
and related auxiliary quantities by means of polynomial recurrences and a careful
asymptotic analysis. It turns out that the so-called resistance scaling factor of a
graph plays an essential role in both instances, a phenomenon that was previously
observed for the number of spanning trees. Several explicit examples show that
our findings are likely to hold in an even more general setting.

1. Introduction

In several recent papers [3, 4, 5, 6, 14, 15, 16] the enumeration of various graph-
theoretical objects on self-similar graphs was studied, including, among others, the
number of spanning trees and forests, matchings, and connected subgraphs. Some of
these counting problems have a background in theoretical physics, as also explained
in [3]: the number of spanning forests of a graph can be seen as a special value of
the Tutte polynomial T (G, x, y) of a graph (namely, the value for x = 2, y = 1).
On the other hand, it also occurs as a special q → 0 limit of the partition function
of the q-state Potts model, see for example [13]. While this and related problems
are well-studied for lattices, [3] is the first work where fractal-type structures are
investigated. There, the authors were concerned with the asymptotic behavior of
the number of spanning forests |SF(Gn)| for an increasing family of graphs Gn, and
in particular with the associated asymptotic growth constant

lim
n→∞

log|SF(Gn)|
|Gn|

,

which is a quantity of physical interest. The authors of [3] were able to calculate
numerical values for the growth constants of Sierpiński graphs with small dimension.
In the present paper, we study the problem in more generality, but we have to restrict
ourselves to a special type of construction that will be explained in the following
section. The other counting problem that we address is the enumeration of connected
subgraphs. We will see that similar techniques can be used for both problems and
that the so-called resistance scaling factor of a graph with respect to two of its
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vertices plays a crucial role in both instances. This phenomenon also occurs in the
enumeration of spanning trees, which was exhibited in [16].

Let us demonstrate this in the case of the aforementioned sequence of finite
Sierpiński graphs X0, X1, X2, . . . which are depicted on Figure 1. The number of

X0 X1 X2 X3

Figure 1. Finite Sierpiński graphs X0, X1, X2, X3.

spanning trees in the level-n graph Xn is described by a system of polynomial re-
currence equations:

a1,n+1 = 6a2
1,na2,n,

a2,n+1 = 7a1,na2
2,n + a2

1,na3,n,

a3,n+1 = 14a3
2,n + 12a1,na2,na3,n,

where ak,n is the number of spanning forests in Xn with k components each of which
contains exactly one “boundary vertex” of Xn, see [6, 14]. From this it is not too
difficult to derive an explicit formula for the number τ(Xn) of spanning trees in Xn:

τ(Xn) =
4

√

3

20

(

5

3

)−n/2
(

4
√

540
)3n

.

In [16] it was proved that the number of spanning trees can be computed explicitly
for a large class of self-similar graphs with a high degree of symmetry. Similarly, the
number of connected subgraphs or connected subsets can be described by a system
of seven polynomial recurrence equations:

b1,n+1 = 12b1,nb2,nb4,n + 14b
3
2,n

+ 3b1,nb2
5,n + · · · ,

b2,n+1 = b1,nb
2
4,n

+ 7b
2
2,n

b4,n + b2,nb2
4,n + 3b2,nb2

5,n + · · · ,

b3,n+1 = 2b1,nb4,nb5,n + · · · ,

b4,n+1 = 6b2,nb
2
4,n

+ b3
4,n + 3b4,nb2

5,n,

b5,n+1 = 4b2,nb4,nb5,n + · · · ,

b6,n+1 = 2b2,nb2
5,n + · · · ,

b7,n+1 = 3b3,nb2
5,n + · · · .

We refer to [15] for details, including a precise definition of the quantities involved.
It turns out that the asymptotically significant terms are those which are written in
bold. We point out that this part of the system agrees with the system for spanning
trees. Hence the number of connected subgraphs (or subsets) is asymptotically given
by

c ·
(

5
3

)−n

2 · β3n

for constants c = 6.163424 . . . and β = 2.3032106556 . . . In [15] it was conjectured
that a similar formula holds for other self-similar graphs as well, which we will
verify for a very specific class in this paper, namely self-similar graphs with two



ENUMERATION 3

“boundary” vertices. We obtain precise asymptotic information for the number of
spanning forests and the same for the number of connected subgraphs under mild
conditions on the geometry of Xn.

2. Setting and statement of results

Let G = (V G,EG) be a finite (multi-)graph with vertex set V G and edge set
EG. Fix two distinguished vertices v, w in G. Throughout this work we denote by
s = |EG| the number of edges in G, by d = dG(v, w) the distance of the distinguished
vertices v and w in G, and by δ = |V G| − 1 the number of edges in a spanning tree
of G. Using G as model, construct a sequence X0, X1, X2, . . . of self-similar (multi-
)graphs as follows:

• The initial graph X0 is given together with two distinguished vertices v0, w0

and is assumed to be finite.
• The graph Xn+1 is obtained by replacing every edge of G by an isomorphic

copy of Xn, where vn, wn are used for linkage. There are two possibilities
for each replacement. Fix one of these once and forever. The distinguished
vertices vn+1, wn+1 of Xn+1 emerge from v, w in G.

For an edge e ∈ EG we write hv(e) ∈ V G for the endpoint of e which is merged
with vn during the construction and call the vertex hv(e) the v-end of the edge e.
We define the w-end hw(e) of e analogously. Thus, in every stage of the construction
an edge e in G is replaced by Xn, so that the vertex hv(e) is merged with vn and
hw(e) is merged with wn.

We always assume that X0 and G are connected, so that the graphs Xn are
connected, too. By considering edges of G as resistors with unit resistance we may
regard G as a electrical network. With respect to the boundary v, w (source, sink)
the network G is electrically equivalent to a single resistor with some resistance ρ,
which is called the resistance scaling factor of G with respect to v and w, see for
example [1, 8, 12, 15]. Notice that ρ ≤ 1 if d = dG(v, w) = 1.

v0 w0

X0

v1 w1

X1

v2 w2

X2

v3 w3

X3

Figure 2. The Austria graphs X0,X1,X2, and X3.

Example 1. The “Austria” graphs X0, X1, . . . were first studied in [10] with respect
to volume growth and later also in [15] in the context of combinatorial enumeration
(their shape resembles a map of Austria, see Figure 2). Since the initial graph is
given by X0 = K2, the model graph G equals X1. The orientation of the replacement
can be seen in X2 and X3 in Figure 2. Obviously, s = 4, d = 2, δ = 3, and ρ = 5

3
.

Example 2. In [11] spectral properties of the modified Koch curve were studied. It
is a minor but interesting variation of the fractal Koch curve. The first few graphs
in the associated graph sequence are depicted in Figure 3. Since X0 = K2 the model
graph G is again X1. Due to symmetry there are no choices during the replacement.
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X0

X1

X2

X3

Figure 3. The finite modified Koch graphs X0,X1,X2, and X3.

Theorem 1. Assume that s > 1, then two different cases concerning the asymptotics
of spanning forests in Xn may occur:

(I) The number of spanning forests in Xn which do not connect vn and wn

is given by
C1 βsn

1 (1 + o(1)),

whereas the number of spanning forests in Xn connecting vn and wn sat-
isfies

C2 βsn

1 β−dn

2 (1 + o(1))

for certain constants β1 > 1, β2 ≥ 1, C1 > 0, C2 > 0.

(II) The number of spanning forests in Xn which do not connect vn and wn

is given by

C3 ρ
δ−1

s−1
n βsn

3 (1 + o(1)),

whereas the number of spanning forests in Xn connecting vn and wn sat-
isfies

C4 ρ− s−δ

s−1
n βsn

3 (1 + o(1))

for certain constants β3 > 1, C3 > 0, C4 > 0.

Expressions for these constants are provided in the proof. Depending on the values
of ρ and d, we get the following description:

• If ρ ≥ 1 then Case I occurs.
• If ρ < 1 and d = 1 then Case II occurs.
• If ρ < 1 and d > 1 then both cases are possible depending on the initial

graph X0. Here it may happen that the term βsn

1 (1 + o(1)) of Case I must be

replaced by the weaker term β
sn+O(1)
1 (this situation is described in the proof).

The proof and an example for the case ρ < 1 and d > 1 are provided in Section 3.

Theorem 2. Assume that s > 1, that v, w are leaves (i.e. vertices with degree 1) in
G, that v0, w0 are leaves in X0, and that G is not a path, then there are constants
β4 > 1 and C5,0 > 0, C5,1 > 0, so that the number of non-empty connected subgraphs
of Xn is given by

C5,k ρ− s−δ

s−1
n βsn

4

(

1 + O
(

2−n
))

,

where k ∈ {0, 1} is the remainder of the division of n by 2.
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The assumption that v, w and v0, w0 are leaves assures that the maximal degree
Xn is uniformly bounded. Together with s > 1 it implies further that ρ ≥ 2. In
the case that G is a path it is easy to derive an exact formula for the number of
non-empty connected subgraphs of Xn. Theorem 2 is proved in Section 4.

3. Spanning forests

This section is devoted to the proof of Theorem 1. Thus we always assume that
s > 1. Let SF(G) be the set of all spanning forests in G. Introduce auxiliary sets:
SF

•(G), SF
◦(G). The first set contains all spanning forests of G connecting v and

w, whereas the latter denotes the set of all spanning forests of G, where v and w

are not connected by the forest. Denote by SFm(G) the set of all spanning forests
of G with m edges and combine these notations in the obvious way, e.g. SF

◦
m(G).

Finally, we use SF(Xn), SF
•(Xn), SFm(Xn) analogously.

We are interested in the number |SF(Xn)| of spanning forests in Xn. Obviously,
the disjoint union SF

◦(Xn) ⊎ SF
•(Xn) = SF(Xn) is the set of all spanning forests of

Xn. For simplicity, set an = |SF
•(Xn)|, bn = |SF

◦(Xn)|. Notice that the sequence bn

tends to infinity since s > 1. Since every spanning forest of Xn+1 can be decomposed
into spanning forests on each copy of Xn, we obtain the recursions

an+1 =
∑

F∈SF
•(G)

a|EF |
n b|EG|−|EF |

n =
∑

m

|SF
•
m(G)| am

n bs−m
n ,

bn+1 =
∑

F∈SF
◦(G)

a|EF |
n b|EG|−|EF |

n =
∑

m

|SF
◦
m(G)| am

n bs−m
n .

Using the polynomials p, q, r given by

p(x) = xdq(x) =
δ

∑

m=d

|SF
•
m(G)| xm = |SF

•
d(G)|xd + · · · + |SF

•
δ(G)|xδ,

r(x) =
δ−1
∑

m=0

|SF
◦
m(G)| xm = 1 + · · · + |SF

◦
δ−1(G)|xδ−1,

the previous recursion can be reformulated as

(1) an+1 = bs
n p(xn) = bs

n xd
n q(xn) and bn+1 = bs

n r(xn),

yielding a recursion for the quotient xn = an

bn
:

xn+1 = f(xn) = xd
ng(xn).

Here the rational functions f and g are given by

f(x) =
p(x)

r(x)
and g(x) =

q(x)

r(x)
,

respectively. The degrees of p and r are given by deg(p) = δ and deg(r) = δ − 1
(recall that δ = |V G| − 1). It is easy to see that SF

•
δ(G) is the set of spanning

trees in G and SF
◦
δ−1(G) is the set of spanning forests in G with two components

each of which contains exactly one distinguished vertex. In Bollobas’s book [2] such
spanning forests are called thickets. Note that asymptotic information about the
number of spanning forests in Xn is closely related to the dynamical behavior of f .
This idea was already used in the work [3].
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Lemma 3. Let us note two basic inequalities for |SF
◦
m−1(G)| and |SF

•
m(G)|:

• We have |SF
◦
m−1(G)| ≥ ρ |SF

•
m(G)|.

• Assume that d = dG(v, w) = 1, then |SF
◦
m−1(G)| ≤ |SF

•
m(G)|.

Proof. In order to prove the first part of the lemma, we introduce SF
⊗(G) to be

the set of all spanning forests in SF
◦(G), where v and w can be connected by one

additional edge, and let B ⊆ V G be a vertex subset with v, w ∈ B, so that the
induced subgraph G[B] is connected. Then there is a relation between the number
τ(G[B]) of spanning trees in G[B] and the number θ(G[B]) of thickets in G[B] with
respect to v, w:

θ(G[B]) = ρ(G[B]) τ(G[B]),

where ρ(G[B]) is the resistance scaling factor of G[B] with respect to v, w, see [15];
in fact this formula is a consequence of Kirchhoff’s famous theorem on electrical
currents and spanning trees, see [9] or [2]. Because of Rayleigh’s Monotonicity Law
for electrical networks (see for example [7]) we have ρ(G[B]) ≥ ρ(G) = ρ. Now
define SF

⊗(G,B) to be the set of all forests in SF
⊗(G), where the components of

v and w have union B, and define SF
•(G,B) to be the set of forests in SF

•(G),
where the component of v and w is B. Since SF

⊗(G,B) and SF
•(G,B) only impose

restrictions with respect to v and w within the set B, it follows that

|SF
⊗

m−1(G,B)|
|SF

•
m(G,B)| =

θ(G[B])

τ(G[B])
= ρ(G[B]) ≥ ρ(G) = ρ

holds. A simple decomposition yields

|SF
◦
m−1(G)| ≥ |SF

⊗

m−1(G)| =
∑

B

|SF
⊗

m−1(G,B)| ≥
∑

B

ρ |SF
•
m(G,B)| = ρ |SF

•
m(G)|,

where the sums are taken over all vertex subsets B ⊆ V G with v, w ∈ B, so that
the induced graph G[B] is connected.

For the second statement of the lemma, note that a spanning forest in SF
◦
m−1(G)

must not contain an edge connecting v and w. Adding such an edge to a spanning
forest in SF

◦
m−1(G) yields a forest in SF

•
m(G), proving the inequality. �

Proposition 4. The asymptotic behavior of f at 0 is given by f(x) = O(xd), whereas
the expansion at ∞ is given by f(x) = ρ−1x − c + O(x−1). Here c ≥ 0 is some
constant, which is positive, unless all simple paths (i.e. paths which do not visit
vertices several times) connecting v and w have length 1. In this case the function
f is given by f(x) = ρ−1x.

Proof. Both asymptotic expansions follow from the definitions of f . The constant c

is given by

c =
|SF

•
δ(G)| · |SF

◦
δ−2(G)| − |SF

•
δ−1(G)| · |SF

◦
δ−1(G)|

|SF
◦
δ−1(G)|2

This constant is positive if and only if

ρ =
|SF

◦
δ−1(G)|

|SF
•
δ(G)| <

|SF
◦
δ−2(G)|

|SF
•
δ−1(G)| .

A close inspection of the proof of Lemma 3 shows that |SF
◦
δ−2(G)| > ρ |SF

•
δ−1(G)|

holds, unless all simple paths between v and w have length 1.
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The last part of the statement follows from the fact that

|SF
◦
m−1(G)| = ρ|SF

•
m(G)|

holds, since every forest in SF
◦
m−1(G) corresponds to exactly ρ−1 ∈ N forests in

SF
•
m(G) in this case. �

Corollary 5. The function f satisfies f(x) ≤ ρ−1x and thus xn ≤ ρ−n x0. If not all
simple paths connecting v and w have length 1, then f(x) < ρ−1x for x > 0.

If there is an edge connecting v and w, then f(x) ≥ x. Furthermore, if this edge
is not a bridge, then f(x) > x for x > 0, whence xn → ∞ for n → ∞.

Proof. The first statement follows easily from Lemma 3:

x r(x) =
∑

m

|SF
◦
m−1(G)|xm ≥ ρ

∑

m

|SF
•
m(G)|xm = ρ p(x)

The improved inequality follows from the proof of Lemma 3.

In order to prove the second part, assume that v and w are connected by an
edge. Then a similar computation as before yields f(x) ≥ x. If the edge connecting
v and w is not a bridge, then |SF

◦
m−1(G)| < |SF

•
m(G)| for some m. Hence f(x) > x

for x > 0 in this case. �

Lemma 6. Assume that xn is bounded from above. Then there is a constant β1 > 1,

so that bn = β
sn+O(1)
1 . If xn converges, then the error term can be improved:

bn = C1β
sn

1 (1 + o(1))

for some constant C1 > 0.

Proof. Using Equation (1) we obtain

log bn = s log bn−1 + log r(xn−1) = sn

(

log b0 +
n−1
∑

k=0

s−k−1 log r(xk)

)

by iteration. Define the constant K1 by

K1 = log b0 +
∞

∑

k=0

s−k−1 log r(xk)

(the sum converges due to the boundedness of xn and r(x) ≥ 1 for x ≥ 0). This
further implies

log bn = K1s
n + O(1) and bn = β

sn+O(1)
1 ,

where β1 = exp(K1). Suppose that xn → x∞ holds, then the second part follows
from

log bn = sn

(

K1 −
∞

∑

k=n

s−k−1 log r(xk)

)

= sn

(

K1 −
∞

∑

k=n

s−k−1 log r(x∞) + O

( ∞
∑

k=n

s−k−1(xk − x∞)

))

= sn

(

K1 −
s−n log r(x∞)

s − 1
+ o(s−n)

)

= K1s
n − 1

s−1
log r(x∞) + o(1). �
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Lemma 7. Assume that xn is bounded from above and that d > 1. Then there is a

constant β2 ≥ 1, so that xn = β
−dn+O(1)
2 . If xn converges, then the error term can

be improved:

xn = Cxβ
−dn

2 (1 + o(1))

for some constant Cx > 0.

Proof. Since the sequence xn is bounded from above, there is a constant c so that
xn ∈ [0, c]. For convenience set yn = bn

an
. Then yn+1 = yd

n g(xn)−1 and

log yn = d log yn−1 − log g(xn−1) = dn

(

log y0 −
n−1
∑

k=0

d−k−1 log g(xk)

)

.

Now define K2 by

K2 = log y0 −
∞

∑

k=0

d−k−1 log g(xk).

The sum involved in the definition of K2 converges, since xn ∈ [0, c] and g is bounded
on [0, c] by positive constants. This yields

log yn = K2d
n + O(1) and xn = β

−dn+O(1)
2 ,

where β2 = exp(K2). Since xn is bounded, it follows that β2 ≥ 1. The improvement
of the error term is obtained in the same way as in the proof of Lemma 6:

log yn = K2d
n + 1

d−1
log g(x∞) + o(1),

where x∞ denotes the limit of xn. �

Lemma 8. Assume that ρ < 1 and that xn is not bounded from above, then there
are constants β3 > 1, C3 > 0, C4 > 0, so that

an = |SF
•(Xn)| = C3 ρ− s−δ

s−1
n βsn

3 (1 + O(ρn)),

bn = |SF
◦(Xn)| = C4 ρ

δ−1

s−1
n βsn

3 (1 + O(ρn)).

Proof. Using Proposition 4, it is easy to see that xn tends exponentially to ∞.
Furthermore, it follows from Equation (1), that the quotient yn = bn

an
satisfies

yn+1 = yn
r̃(yn)

q̃(yn)
,

where q̃ and r̃ are the reversed polynomials of q and r, respectively. Since

r̃(0)

q̃(0)
=

|SF
◦
δ−1(G)|

|SF
•
δ(G)| = ρ,

the product

P =
∞
∏

k=0

r̃(yk)

ρ q̃(yk)

converges due to the exponential decay of yn. This implies that yn = P ρny0 (1+εn),
where εn = O(ρn). Using Equation (1) we get an+1 = as

ny
s−δ
n q̃(yn). Define ε′n by the

equation

q̃(yn)(1 + εn)s−δ = |SF
•
δ(G)|(1 + ε′n).
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Note that ε′n = O(ρn). Altogether we obtain an+1 = as
nρ

n(s−δ)C(1 + ε′n), where the
constant C is given by C = (Py0)

s−δ|SF
•
δ(G)|. This implies

log an = sn

(

log a0 +
n−1
∑

k=0

s−k−1
(

k(s − δ) log ρ + log C + log(1 + ε′k)
)

)

.

Now define the constant K3 by the sum

K3 = log a0 +
∞

∑

k=0

s−k−1
(

k(s − δ) log ρ + log C + log(1 + ε′k)
)

.

It follows that

log an = sn

(

K3 −
∞

∑

k=n

s−k−1
(

k(s − δ) log ρ + log C
)

−
∞

∑

k=n

s−k−1 log(1 + ε′k)

)

= K3s
n − n(s − δ) log ρ

s − 1
− log C

s − 1
− (s − δ) log ρ

(s − 1)2
+ O(ρn),

and

log bn = log an + log yn

= K3s
n +

n(δ − 1) log ρ

s − 1
+ log(Py0) −

log C

s − 1
− (s − δ) log ρ

(s − 1)2
+ O(ρn)

proving the statement. �

Now we are prepared to prove Theorem 1:

Proof of Theorem 1. We distinguish several cases:

(A) Assume that ρ ≥ 1. Then xn ≤ ρ−nx0 by Corollary 5.
• ρ > 1, d > 1: Since ρ > 1, the sequence xn decays exponentially to 0.

Hence Lemma 6 and Lemma 7 imply asymptotic expansions of an and bn

with improved error terms. Note that r(0) = 1 and q(0) = |SF
•
d(G)| ≥ 1.

• ρ = 1, d > 1: Corollary 5 yields f(x) < x for x > 0. Hence the sequence
xn tends to 0 and an application of Lemma 6 and Lemma 7 shows once
again, that the strong version of the asymptotic expansions holds.

• ρ = 1, d = 1: In this case there is an edge connecting v and w, which is a
bridge (otherwise ρ < 1). Thus f(x) = x and bn+1 = bs

nr(x0), whence it is
easy to derive exact formulæ for an and bn.

Since d = 1 implies ρ ≤ 1, the case ρ > 1 and d = 1 is impossible.
(B) Assume that ρ < 1 and d = 1. Then Corollary 5 yields f(x) > x for x > 0,

so that xn tends to ∞. In this case Lemma 8 implies the desired asymptotic
expansions of an and bn.

(C) Finally, assume that ρ < 1 and d > 1. The behavior of xn depends on the initial
value x0. Due to Proposition 4 both 0 and ∞ are attracting fixed points of f .
Thus we have to distinguish further:

• If xn → 0, then once again asymptotic expansions of an and bn in strong
forms are obtained from Lemma 6 and Lemma 7.

• If xn → ∞, then asymptotic expansions of an and bn are implied by
Lemma 8.
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• If xn is not caught by the fixpoints 0 or ∞, then xn is bounded by positive
constants. This is the only case where we only obtain weak forms of as-
ymptotic expansions for an and bn by Lemma 6 and Lemma 7 in general.
If xn converges in this case, then the error terms improve to the strong
forms. �

v w

G X0

v0 w0

X ′

0

v′
0

w′

0

X ′′

0

v′′
0

w′′

0

Figure 4. A model graph G and three initial graphs X0, X
′
0, X

′′
0 .

Example 3. Consider the model graph G and the initial graphs X0, X ′
0 and X ′′

0 given
in Figure 4. The evolution of the sequence Xn is shown in Figure 5. In this case
s = 6, d = 2, δ = 4, and ρ = 2

3
. Furthermore, it is easy to compute the polynomials

p and r:

p(x) = 3x2 + 12x3 + 12x4 and r(x) = 1 + 6x + 12x2 + 8x3.

The rational function f : x 7→ p(x)
r(x)

is strictly monotone and convex on [0,∞). Hence

x = 1 is the only fixpoint in (0,∞) and this fixpoint is repelling. Finally, it is easy
to compute that the ratio x0 is given by

x0 =











1 if we take the initial graph X0,
1
3

if we take the initial graph X ′
0,

2 if we take the initial graph X ′′
0 .

Thus, depending on the initial graph, we obtain different types of asymptotic ex-
pansion for the number of spanning forests. Especially, these expansions are given
as follows: In the first case

an = bn = 33/5(6n−1) ≈ 0.51728185 · 1.933182046n

,

in the second case (note that x∞ = 0)

an ≈ 1
3
· 3.992223356n · 1.43574175−2n

and bn ≈ 3.992223356n

,

whereas in the third case we obtain

an ≈ 0.55221996 ·
(

2
3

)−2n/5 · 2.675912006n

,

bn ≈ 0.76288569 ·
(

2
3

)3n/5 · 2.675912006n

.

v0 w0

X0

v1 w1

X1 v2 w2

X2

Figure 5. The graphs X0, X1, X2.



ENUMERATION 11

We conjecture that the function f is always strictly monotone and convex in
[0,∞). As a consequence f has at most one fixpoint in (0,∞), which is then re-
pelling, so that the sequence xn always converges improving the error term always
to o(1).

4. Connected subgraphs

Denote by SG(G) the set of all non-empty (not necessarily induced) subgraphs
of G and define the following subsets of SG(G): For ν ∈ {0, v, w, 2} let SG

ν(G) be
the set of connected subgraphs in SG(G) which contain

• no distinguished vertices, if ν = 0,
• the vertex v but not w, if ν = v,
• the vertex w but not v, if ν = w,
• both distinguished vertices, if ν = 2.

Finally let SG
x(G) be the set of all subgraphs with two connected components each

of which contains one distinguished vertex. For a subgraph H of G let us define

• e2(H) to be the number of edges in EH,
• ev(H) to be the number of edges connecting vertices in V H and V G \ V H,

whose v-end lies in V H.
• ew(H) to be the number of edges connecting V H and V G\V H, whose w-end

lies in V H.
• ex(H) to be the number of edges in G connecting vertices in V H which are

not in EH.

For the sake of notation set aν,n = |SG
ν(Xn)| for ν ∈ {0, v, w, 2, x}, where v and

w are interpreted as vn and wn in Xn. Obviously, aν,n ≥ 1 for ν ∈ {v, w, 2, x} and
n ≥ 0. It is not too difficult to prove that the following system of recursions holds:

(2) aν,n+1 = [ν = 0]s a0,n +
∑

H∈SG
ν(G)

a
ev(H)
v,n a

ew(H)
w,n a

e2(H)
2,n a

ex(H)
x,n .

Here we have used Iverson notation: [ν = 0] is equal to 1 if ν = 0 and 0 otherwise.
To see why this holds, simply notice that a connected subgraph on Xn+1 induces
either a connected subgraph, a subgraph of SG

x-type, or the empty set on each of
the parts that are isomorphic to Xn. The graphs H describe all possible ways for
this. The additional summand in the case ν = 0 arises from the possibility that
a connected subgraph can be contained in one of the parts (without its boundary
vertices) only. Of course, such a connected subgraph cannot contain vn+1 or wn+1.

The bound a2,n+1 ≥ as
2,n is a simple consequence of these recursions: Choose

H = G in the recursion (2) for a2,n+1. Similarly, by choosing appropriate “extremal”
subgraphs we obtain

a0,n+1 ≥ a
s−deg(v)−deg(w)
2,n , av,n+1 ≥ a

s−deg(w)
2,n ,

aw,n+1 ≥ a
s−deg(v)
2,n , ax,n+1 ≥ as−c

2,n ,

where c the number of edges in a minimal v-w cut. As a consequence, a2,n grows
at least doubly exponentially if G is not a path. Therefore, for ν ∈ {0, v, w, x}, the
quantity aν,n also grows at least doubly exponentially in this case.
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The proof of Theorem 2 is split into several lemmata. In the following we assume
that v, w and v0, w0 have degree 1 in G and X0, respectively, and write v′ and w′

for the unique neighbors of v and w in G.

Lemma 9. We have aν,n ≥ a2,n for ν ∈ {0, v, w} and

ax,n+1

a2,n+1

≥ 2 · ax,n

a2,n

.

Proof. The first inequality is plain due to the degree restriction: since vn and wn

have degree 1 in Xn, we can obtain a connected subgraph that doesn’t contain wn

from every connected subgraph that contains wn by removing wn and its incident
edge. Hence, av,n ≥ a2,n, and likewise for ν = w and ν = 0. In order to prove
the second inequality, let us note that every connected subgraph H of G which
contains v and w has to contain the edge vv′ as well as the edge ww′. Therefore,
we can construct two graphs Hv, Hw ∈ SG

x(G) from H by removing the edge vv′

respectively ww′. Then

eν(Hν) = eν(H), e2(Hν) = e2(H) − 1, ex(Hν) = ex(H) + 1

for ν ∈ {v, w}. Together with Equation (2), this shows that

ax,n+1 ≥ 2a2,n+1 ·
ax,n

a2,n

,

proving the statement. �

Assume that G is not a path, so that a2,1 > 1. Then we have already noticed
that aν,n grows at least doubly exponentially for ν ∈ {0, v, w, 2} if n → ∞:

(3) aν,n ≥ Cνα
sn

for some α > 1 and constants Cν . Due to this observation it is possible to reduce
the recursions given by (2) up to a very small error term: We say that a subgraph
H of G is important, if every edge in G has at least one endpoint in H, and denote
by SG

ν
i (G) the important subgraphs of SG

ν(G).

Lemma 10. Assume that G is not a path, then for ν ∈ {0, v, w, 2} the following
asymptotic formulæ hold:

aν,n+1 =
(

1 + O
(

α−sn)

)

∑

H∈SG
ν
i
(G)

a
ev(H)
v,n a

ew(H)
w,n a

e2(H)
2,n a

ex(H)
x,n .

Proof. Since aν,n grows at least doubly exponentially only those summands in the
Formulæ (2) can be of asymptotic importance which belong to a subgraph H, where
ev(H) + ew(H) + e2(H) + ex(H) is maximal. However, this equals s− er(H), where
er(H) is the number of edges connecting vertices in V G\V H. This means that every
edge of G must have at least one endpoint in H, so that H must be an important
subgraph. The error term is then implied by (3). �

We note that in Lemma 12 more explicit expressions for aν,n+1 are derived.
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Lemma 11. Assume that G is not a path. Suppose that hw(vv′) 6= v or hv(ww′) 6= w,
then there exist constants cν for ν ∈ {0, v, w}, so that

aν,n = cνa2,n + O
(

α−sn)

holds. If hw(vv′) = v and hv(ww′) = w, then a distinction on the parity of n is
necessary: there are constants ck,ν for ν ∈ {0, v, w} and k ∈ {0, 1}, so that

aν,n = ck,νa2,n + O
(

α−sn)

holds, where k ∈ {0, 1} is the remainder of the division of n by 2.

Proof. Depending on the construction of Xn+1, there are four possible arrangements
with respect to the replacement of the edges vv′ and ww′ by copies of Xn. We
deal with two of these four cases, since they are all very similar. Hence assume
that hv(vv′) = v and hw(ww′) = w. Consider an important graph H in SG

v
i (G).

This graph H must contain w′ but not w. Hence we can construct an important
graph Hw ∈ SG

2
i (G) by adding the vertex w and the edge ww′. The mapping

SG
v
i (G) → SG

2
i (G), H 7→ Hw is in fact a one-to-one correspondence. Since

ev(Hw) = ev(H) − 1, ew(Hw) = ew(H),

e2(Hw) = e2(H) + 1, ex(Hw) = ex(H),

it follows that

av,n+1 = a2,n+1 ·
(

av,n

a2,n

+ O
(

α−sn)

)

or
av,n+1

a2,n+1

=
av,n

a2,n

+ O
(

α−sn)

.

If εn denotes the error term on the right hand side, then

av,n

a2,n

=
av,0

a2,0

+
n−1
∑

k=0

εk,

which converges to

cv =
av,0

a2,0

+
∞

∑

k=0

εk,

and the error term is given by

av,n

a2,n

= cv −
∞

∑

k=n

εk = cv + O
(

α−sn)

.

Analogous arguments show that
aw,n

a2,n

= cw + O
(

α−sn)

and
a0,n

a2,n

= c0 + O
(

α−sn)

,

which implies the statement for this arrangement. If hv(vv′) = v,hv(ww′) = w or
hw(vv′) = v,hw(ww′) = w, we obtain the same result by essentially the same method,
but if hw(vv′) = v and hv(ww′) = w, things are slightly different. Again, there is a
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one-to-one correspondence H 7→ Hw between SG
v
i (G) and SG

2
i (G) (constructed as

before), but we have

ev(Hw) = ev(H), ew(Hw) = ew(H) − 1,

e2(Hw) = e2(H) + 1, ex(Hw) = ex(H).

Therefore, we get

av,n+1 = a2,n+1 ·
(

aw,n

a2,n

+ O
(

α−sn)

)

and analogously

aw,n+1 = a2,n+1 ·
(

av,n

a2,n

+ O
(

α−sn)

)

.

Combining the two, we obtain

av,n+2 = a2,n+2 ·
(

av,n

a2,n

+ O
(

α−sn)

)

,

and following the above arguments we find that av,n converges to some value c0,v for
even n and some value c1,v for odd n, which makes the distinction of the two cases
necessary. The rest of the proof is analogous to the first case again. �

As before we write τ(G) for the number of spanning trees in G and θ(G) for
the number of thickets in G with respect to v and w. Furthermore, recall that
δ = |V G| − 1 is the number of edges in a spanning tree of G. A vertex of degree 1
is called a leaf and we write ℓv to denote the number of leaves (except v, w) of G,
which are not v-ends. Let tv be equal to v, if w is the w-end of the edge ww′, or
equal to w otherwise. We use ℓw and tw analogous to ℓv and tv, respectively. For
simplicity let ℓ = ℓv + ℓw be the number of leaves (except v, w) in G.

Lemma 12. If G is not a path, then, for ν ∈ {v, w},
a0,n+1 = τ(G) atv ,natw,naδ−ℓ−2

2,n (av,n + a2,n)ℓv(aw,n + a2,n)ℓwas−δ
x,n (1 + O(2−n)),

aν,n+1 = τ(G) atν ,na
δ−ℓ−1
2,n (av,n + a2,n)ℓv(aw,n + a2,n)ℓwas−δ

x,n (1 + O(2−n)),

a2,n+1 = τ(G) aδ−ℓ
2,n (av,n + a2,n)ℓv(aw,n + a2,n)ℓwas−δ

x,n (1 + O(2−n)),

ax,n+1 = θ(G) aδ−ℓ−1
2,n (av,n + a2,n)ℓv(aw,n + a2,n)ℓwas−δ+1

x,n (1 + O(2−n)).

Proof. By Lemma 11 the quantities av,n for ν ∈ {0, v, w, 2} are of the same asymp-
totic order. Lemma 9 implies ax,n ≥ c 2n a2,n for some constant c. Consequently,
only those summands in the Equations (2) are of interest which belong to an im-
portant subgraph H, where ex(H) is maximal (all the other summands are smaller
by an exponential factor). Certainly, H must not contain any circles, since we could
remove edges in this case to increase ex(H) and decrease e2(H) instead. Further-
more, V G \ V H contains leaves only. Otherwise, assume that there is a vertex u in
V G \ V H that is not a leaf. Since the subgraph H is important, all neighbors of
this vertex have to be in V H, and there are at least two of them, since u is not a
leaf. Now we can add u and an edge between u and one of its neighbors to H to
obtain a new important subgraph H ′, and ex(H

′) > ex(H) (there is at least one edge
between u and one of the vertices in V H ′ that doesn’t belong to EH ′ and therefore
contributes to ex(H

′), but not to ex(H)).
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Now consider for instance the recurrence for a2,n+1 in (2). Each important
subgraph H in the sum for which ex(H) is maximized is obtained by taking a
spanning tree and possibly removing some of the leaves (since it must be connected
and cycle-free and contain all vertices except possibly for the leaves). There are τ(G)
choices for the spanning tree, and for each of the leaves we may choose whether to
include it or not. Edges whose one endpoint is a leaf contribute a factor av,n (if the
leaf is not included and a w-end), a factor aw,n (if the leaf is not included and a
v-end) or a factor a2,n (if the leaf is included). The remaining edges contribute a
factor of a2,n if they are contained in H (there are always precisely δ− ℓ such edges)
and ax,n otherwise (there are precisely s− δ such edges). Combining everything, we
obtain the equation for a2,n+1. The other three equations follow analogously. �

Corollary 13. If G is not a path, then there is a constant cx, so that

ax,n = cxρ
na2,n(1 + O(2−n)).

Proof. Divide the last two equations in the previous lemma to find

ax,n+1

a2,n+1

=
θ(G)

τ(G)
· ax,n

a2,n

(1 + O(2−n)) = ρ · ax,n

a2,n

(1 + O(2−n)).

Now we can apply the same technique as in Lemma 8 to show that

ax,n

a2,n

= cxρ
n(1 + O(2−n))

for some constant cx, which concludes the proof of this lemma. �

Proof of Theorem 2. Suppose that hw(vv′) 6= v or hv(ww′) 6= w. Using Lemma 11,
Lemma 12, and Corollary 13 we obtain

a2,n+1 = Cρn(s−δ)as
2,n(1 + O(2−n))

for some constant C. The methods employed in the proof of Lemma 8 now yield
the statement. The case hw(vv′) = v and hv(ww′) = w is similar. �

We conjecture that a result similar to Theorem 2 holds, when the assumption
that v, w are leaves is replaced by ρ > 1. The following example indicates the
differences and problems.

X1

v wv w w v

v

w

v

w

Figure 6. The first stage in the sequence of Austria graphs. Boxed
labels indicate v-ends and w-ends of edges.
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Example 4. Let us consider the number of connected subgraphs in the sequence of
Austria graphs, see Example 1. Using Formula (2) and Figure 6 we obtain:

a0,n+1 = 4a0,n + a2
w,n + av,na2

w,n + a3
w,na2,n,

av,n+1 = av,n + av,naw,na2,n + a2
w,na

2
2,n,

aw,n+1 = a2
v,n + av,naw,na2,n + a2

v,naw,na2,n + aw,na3
2,n + 3aw,na2

2,nax,n,

a2,n+1 = a2
v,na

2
2,n + a4

2,n + 3a3
2,nax,n,

ax,n+1 = a3
v,n + a2

v,naw,na2,n + 2a2
v,na2,nax,n + a3

2,nax,n + 5a2
2,na2

x,n.

Since all the numbers aν,n grow at least doubly exponentially, say aν,n ≥ Cνζ
4n

(for
some constants Cν and ζ > 1), the terms of total degree 4 are much larger than the
others. So we have to study the following:

a0,n+1 = a3
w,na2,n

(

1 + O
(

ζ−4n))

,

av,n+1 = a2
w,na

2
2,n

(

1 + O
(

ζ−4n))

,

aw,n+1 = aw,n(a2
v,na2,n + a3

2,n + 3a2
2,nax,n)

(

1 + O
(

ζ−4n))

,

a2,n+1 = a2,n(a2
v,na2,n + a3

2,n + 3a2
2,nax,n),

ax,n+1 = (a2
v,naw,na2,n + 2a2

v,na2,nax,n + a3
2,nax,n + 5a2

2,na2
x,n)

(

1 + O
(

ζ−4n))

.

It follows that

a0,n+1

av,n+1

=
aw,n

a2,n

·
(

1 + O
(

ζ−4n))

,
aw,n+1

a2,n+1

=
aw,n

a2,n

·
(

1 + O(ζ−4n))

,

so that

a0,n = c av,n

(

1 + O
(

ζ−4n))

and aw,n = c a2,n

(

1 + O
(

ζ−4n))

for some constant c. By removing the edge incident to vn from a connected subgraph
in SG

2(Xn) a subgraph in SGx(Xn) is obtained. Thus ax,n ≥ a2,n. Furthermore,
using the recursions we get

ax,n+1

a2,n+1

≥
2a2

v,na2,nax,n + a3
2,nax,n + 5a2

2,na2
x,n

a2
v,na

2
2,n + a4

2,n + 3a3
2,nax,n

=
ax,n

a2,n

·
(

1 +
a2

v,n + 2a2,nax,n

a2
v,n + a2

2,n + 3a2,nax,n

)

.

Since

2(a2
v,n + 2a2,nax,n) ≥ 2a2

v,n + a2
2,n + 3a2,nax,n ≥ a2

v,n + a2
2,n + 3a2,nax,n

the inequality

ax,n+1

a2,n+1

≥ 3

2
· ax,n

a2,n

.

follows. Using this estimate we obtain

ax,n ≥ c′
(

3
2

)n
a2,n and aw,n ≥ c′′

(

3
2

)n
av,n,

for some constants c′ and c′′, since

aw,n+1

av,n+1

≥
3aw,na

2
2,nax,n

a2
w,na

2
2,n

·
(

1 + O
(

ζ−4n))

=
3ax,n

aw,n

·
(

1 + O
(

ζ−4n))

.
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As a consequence we can further simplify the recursions:

a0,n+1 = a3
w,na2,n

(

1 + O
(

ζ−4n))

,

av,n+1 = a2
w,na

2
2,n

(

1 + O
(

ζ−4n

)
)

,

aw,n+1 = 3aw,na
2
2,nax,n

(

1 + O
((

2
3

)n))
,

a2,n+1 = 3a3
2,nax,n

(

1 + O
((

2
3

)n))
,

ax,n+1 = 5a2
2,na2

x,n

(

1 + O
((

2
3

)n))
.

Using the last two relations we get

ax,n = cx

(

5
3

)n
a2,n

(

1 + O
((

2
3

)n))

for some cx. Now the methods of Lemma 8 yield

aν,n = Cν

(

5
3

)(2/3−kν)n
β4n(

1 + O
((

2
3

)n)

,

where

kν =











0 if ν = x,

1 if ν ∈ {2, w},
2 if ν ∈ {v, 0}.

The approximate numerical value of β is 1.77280776, whereas (C0, Cv, Cw, C2, Cx) is
approximately equal to

(1.13215234, 0.793383233, 0.950775521, 0.666279023, 0.632751624).

For comparison with Theorem 2 we recall that ρ = 5
3

and that the exponent of ρ in
this theorem is given by

−s − δ

s − 1
= −1

3
.

Although the number of connected subgraphs is given by the same asymptotic form
as before, the quantities aν,n show a different behavior.

We notice that the asymptotics derived in the previous example always holds,
when deg(vn) = 1 and deg(wn) = c > 1 or vice versa. The argument for this follows
the line of the proof of Theorem 2 with suitable modifications. The final example
demonstrates that quite a different asymptotic behavior is possible if the resistance
scaling factor ρ is less than 1.

Example 5. We consider the graphs Xn defined in Example 3. Since the graphs Xn

are symmetric with respect to vn and wn, the quantities av,n and aw,n are the same:
Thus set a1,n = av,n = aw,n. Then we get

a0,n+1 = 6a0,n + 3a2
1,n,

a1,n+1 = a3
1,n + 3a3

1,na2,n + 3a3
1,na2

2,n + a3
1,na3

2,n = a3
1,n(1 + a2,n)3,

a2,n+1 = 3a4
1,na2

2,n + 3a2
1,na4

2,n + a6
2,n + 12a2

1,na3
2,nax,n + 12a4

2,na2
x,n + 6a5

2,nax,n,

ax,n+1 = a6
1,n + 6a4

1,na2,nax,n + 12a2
1,na2

2,na2
x,n + 8a3

2,na3
x,n = (a2

1,n + 2a2,nax,n)3.

As usual the numbers aν,n (ν ∈ {0, 1, 2, x}) grow at least doubly exponentially, say
aν,n ≥ cνζ

6n

, it follows that

a2,n+1

a1,n+1

≥
3a2

1,na4
2,n

a3
1,n(1 + a2,n)3

≥ 3 · a2,n

a1,n

·
(

1 + O
(

ζ−6n))
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We have a1,n ≤ ax,n by induction: a1,n+1 ≤ 8a3
1,na3

2,n ≤ 8a3
2,na3

x,n ≤ ax,n+1. As a
consequence it follows that

ax,n+1

a1,n+1

=
(a2

1,n + 2a2,nax,n)3

a3
1,n(1 + a2,n)3

=

(

O(3−n) + 2 · ax,n

a1,n

)3
(

1 + O
(

ζ−6n))

= 8

(

ax,n

a1,n

)3

(1 + O(3−n)).

Using the techniques of Lemma 6 we obtain

ax,n = 2−3/2β3n

a1,n(1 + O(3−n))

for some constant β > 1. Finally this implies that

a2,n+1

ax,n+1

≥
12a4

2,na2
x,n

(a2
1,n + 2a2,nax,n)3

=
3

2
· a2,n

ax,n

(

1 + O
(

β−3n))

.

Thus we can reduce the system of recursions to

a0,n+1 = 3a2
1,n

(

1 + O
(

ζ−6n))

,

a1,n+1 = a3
1,na

3
2,n

(

1 + O
(

ζ−6n))

,

a2,n+1 = a6
2,n

(

1 + O
((

2
3

)n))

,

ax,n+1 = 8a3
2,na3

x,n

(

1 + O
(

β−3n))

.

From this we easily obtain

a0,n = 3β
6n/3
1 β

2·3n/3
2

(

1 + O
((

2
3

)n))
,

a1,n = β6n

1 β3n

2

(

1 + O
((

2
3

)n))
,

a2,n = β6n

1

(

1 + O
((

2
3

)n))
,

ax,n = 2−3/2β6n

1 β3n

3

(

1 + O
((

2
3

)n))
,

where β1 > 1 and β2, β3 ∈ (0, 1). Since a1,n ≤ ax,n it follows that β2 < β3. Numerical
values of β1, β2, β3 are given by

β1 ≈ 1.96936033, β2 ≈ 0.43546557, β3 ≈ 0.92526029.

We remark that this type of asymptotics always holds when aν,n = o(a2,n) for
ν ∈ {0, v, w, x}. In this case the reasoning used in the example above applies, so
that

(4) av,n ≈ βsn

1 βdn
w

v , aw,n ≈ βsn

1 βdn
v

w , a2,n ≈ βsn

1 , ax,n ≈ Cβsn

1 βcn

x ,

where β1 > 1, βv, βw, βx ∈ (0, 1), C > 0, dv = deg(v), dw = deg(w), and c is the
number of edges in a minimal v-w cut. The behavior of a0,n is possibly different due
to the fact that G \ {v, w} may be disconnected.

Finally, we conjecture that the number of connected subgraphs exhibit a phase
transition: when ρ > 1, then the asymptotics of Theorem 2 holds, whereas the
asymptotics is given by (4) if ρ < 1.
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der linearen Verteilung galvanischer Ströme geführt wird. Ann. Phys. Chem., 72(4):497–508,
1847. Gesammelte Abhandlungen, Leipzig, 1882.

[10] B. Krön. Growth of self-similar graphs. J. Graph Theory, 45(3):224–239, 2004.
[11] L. A. Malozemov. The difference Laplacian ∆ on the modified Koch curve. Russian J. Math.

Phys., 1(4):495–509, 1993.
[12] V. Metz. The short-cut test. J. Funct. Anal., 220(1):118–156, 2005.
[13] A. D. Sokal. The multivariate Tutte polynomial (alias Potts model) for graphs and matroids.

In Surveys in combinatorics 2005, volume 327 of London Math. Soc. Lecture Note Ser., pages
173–226. Cambridge Univ. Press, Cambridge, 2005.

[14] E. Teufl and S. Wagner. The number of spanning trees of finite sierpinski graphs. In Fourth
Colloquium on Mathematics and Computer Science, volume AG of DMTCS Proceedings, pages
411–414, 2006.

[15] E. Teufl and S. Wagner. Enumeration problems for classes of self-similar graphs. J. Combin.
Theory Ser. A, 114(7):1254–1277, 2007.

[16] E. Teufl and S. Wagner. The number of spanning trees in self-similar graphs. preprint, 2008.

Elmar Teufl, Fakultät für Mathematik, Universität Bielefeld, P.O.Box 100131,

33501 Bielefeld, Germany

E-mail address: teufl@math.uni-bielefeld.de

Stephan Wagner, Department of Mathematical Sciences, Stellenbosch Univer-

sity, Private Bag X1, Matieland 7602, South Africa

E-mail address: swagner@sun.ac.za


	1. Introduction
	2. Setting and statement of results
	3. Spanning forests
	4. Connected subgraphs
	Acknowledgment
	References

