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Abstract. Recently, Hwang proved a central limit theorem for restricted Λ-partitions, where Λ
can be any nondecreasing sequence of integers tending to infinity that satisfies certain technical

conditions. In particular, one of these conditions is that the associated Dirichlet series has only
a single pole on the abscissa of convergence. In the present paper, we show that this condition
can be relaxed, and provide some natural examples that arise from the study of integers with

restrictions on their digital (base-b) expansion.

1. Introduction

For a nondecreasing sequence Λ = (Λ1,Λ2, . . .) of positive integers with Λk → ∞, a restricted
Λ-partition of n is a subsequence of Λ that sums to n, i.e.,

s
∑

j=1

Λij
= n

with i1 < i2 < . . . < is. On the other hand, if repetitions are allowed (i.e. i1 ≤ i2 ≤ . . . ≤ is),
one speaks of unrestricted Λ-partitions. The number of restricted/unrestricted Λ-partitions is
denoted by qΛ(n) and pΛ(n), respectively. There is a wealth of literature on the enumeration of
restricted or unrestricted Λ-partitions, see for instance [3] and the references therein. Ingham [14]
provides a Tauberian theorem that results in an asymptotic formula for the number of Λ-partitions
under certain technical conditions. A different approach was used by Meinardus [16], who applied
methods from complex analysis and was able to remove a monotonicity condition necessary in
Ingham’s approach. Essentially, if the Dirichlet generating function of Λ has only a simple pole
at α > 0 and can be analytically continued into a half-plane Re s ≥ −α0 with α0 > 0, and some
other (fairly mild) conditions are satisfied, one obtains an asymptotic formula of the type

pΛ(n) ∼ A · nκ exp
(

B · nα/(α+1)
)

for unrestricted Λ-partitions. Under more general conditions, Roth and Szekeres [17] were able
to prove slightly weaker theorems for both restricted and unrestricted partitions. The following
holds for restricted partitions, the theorem for unrestricted partitions is similar:

Theorem 1 ([17, Theorem 2]). Assume that the following conditions hold:

• α−1 = lim
k→∞

log Λk

log k
exists,

• Jk = inf

{

(log k)−1
k
∑

ν=1

‖Λνβ‖2

}

→ ∞ as k → ∞, where the infimum is taken over all β

with 1
2Λ−1

k < β ≤ 1
2 , and ‖x‖ denotes the distance of x from the nearest integer.

Then we have an asymptotic formula for qΛ(n), namely

qΛ(n) =(2πA)−1/2 exp

( ∞
∑

k=1

(

ηΛk

eηΛk + 1
+ log(1 + e−ηΛk)

)

)

·
(

1 + O(n−1/(α+1)+δ)
)

,
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where η = η(n) is determined from

n =

∞
∑

k=1

Λk

eηΛk + 1

and

A = A(n) =

∞
∑

k=1

Λ2
keηΛk

(eηΛk + 1)2
.

The length (number of summands) of a partition is one of the most natural parameters to
study. For unrestricted partitions, it was shown by Erdős and Lehner [5] that the number of
summands asymptotically follows an extreme-value distribution in the special case Λ = N, a result
that was further extended in many directions, see for instance [8]. Similar results are known for
the distribution of distinct elements in unrestricted partitions, see [12, 18]. On the other hand, the
limit distribution is Gaussian if restricted partitions are considered, as was shown by Hwang [13],
who extended a previous result of Erdős and Lehner. His conditions are essentially taken from
the aforementioned paper of Meinardus [16]. Specifically, Hwang’s central limit theorem reads as
follows:

Theorem 2 ([13, Theorem 1]). Suppose that the sequence Λ satisfies the following conditions:

(M1) The Dirichlet series D(s) =
∑

k≥1 Λ−s
k converges in the half-plane Re s > α > 0, and can

be analytically continued into the half-plane Re s ≥ −α0 for some α0 > 0. In Re s ≥ −α0,
D(s) is analytic except for a simple pole at s = α with residue A.

(M2) There exists an absolute constant c1 such that D(s) ≪ |t|c1 uniformly for Re s ≥ −α0 as
|t| → ∞.

(M3) Define g(τ) =
∑

k≥1 e−Λkτ , where τ = r + iy with r > 0 and −π ≤ y ≤ π. There

exists a positive constant c2 such that g(r) − Re g(τ) ≥ c2(log(1/r))2+4/α2

uniformly for
π/2 ≤ |y| ≤ π as r → 0+.

Let ̟n be the random variable counting the number of summands in a random restricted Λ-
partition of n. Set κ = AΓ(α)(1 − 2−α)ζ(α + 1), where Γ and ζ are the Gamma function and the
Riemann zeta function, respectively. Furthermore, set

µn = (κα)1/(α+1) (1 − 21−α)ζ(α)

α(1 − 2−α)ζ(α + 1)
nα/(α+1),

σ2
n = (κα)1/(α+1)

(

(1 − 22−α)ζ(α − 1)

α(1 − 2−α)ζ(α + 1)
− (1 − 21−α)2ζ(α)2

(α + 1)(1 − 2−α)2ζ(α + 1)2

)

nα/(α+1).

Then ̟n is asymptotically normally distributed with mean E(̟n) ∼ µn and variance V(̟n) ∼ σ2
n:

P

(

̟n − µn

σn
< x

)

=
1√
2π

∫ x

−∞
e−t2/2dt + o(1),

uniformly for all x as n → ∞.

It is generally required in all the mentioned results that Meinardus’ condition on the Dirichlet
generating function (analyticity on a half-plane except for a simple pole at α) is satisfied. The
examples given by Hwang include, for instance, powers (Λj = jℓ) or arithmetic progressions
(Λj = a + bj, where a and b are coprime). However, there are fairly natural integer sequences
which do not satisfy the conditions (M1)-(M3) of Theorem 2. Specifically, we consider integers
satisfying certain conditions on their digits in base b; various authors, most notably Gel’fond [11],
studied arithmetical properties of integers defined by such conditions. A typical example is the
set of numbers with missing digits, which were treated, among others, by Erdős, Mauduit and
Sárközy [6, 7]: if, for instance, one considers only those integers which do not contain the digit 2
in their base-3 expansion, one obtains the sequence

Λ = (1, 3, 4, 9, 10, 12, 13, 27, . . .),

which is Sloane’s A005836 [19]. It is not difficult to see (and will be shown later) that the

corresponding Dirichlet generating function does not only have a pole at α = log 2
log 3 , but also
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further poles along the line Re s = α. This and similar examples form our motivation for replacing
Hwang’s conditions (M1) and (M2) by slightly weaker assumptions that allow for further poles
with nonnegative real part. It will turn out that the limit distribution is still Gaussian under these
assumptions and thus specifically for numbers with missing digits.

In order to get a flavor of the new phenomena that occur, let us apply the result of Roth and
Szekeres (Theorem 1) to the sequence of integers with missing digits. Let b > 2 be an integer, and
let D ⊆ {0, 1, . . . , b− 1} be a set of digits (1 < |D| < b). Without loss of generality, we will always
assume that the digits in D do not have a common divisor (otherwise, simply divide everything
by the greatest common divisor). Let MD(b,D) be the set of positive integers with the property
that all digits in the b-ary representation come from the set D, i.e.,

MD(b,D) :=

{

k−1
∑

i=0

aib
i | k ∈ N, ai ∈ D

}

\ {0}.

Now we would like to determine (asymptotically) the number of restricted MD(b,D)-partitions.
To this end, we need some information on the Dirichlet generating function of such a set, which
is provided by the following lemma.

Lemma 3. Let D(s) be defined by

D(s) =
∑

m∈MD(b,D)

m−s.

Then we have

D(s) =
(

1 − |D|b−s
)−1

R(s),

where R is analytic within the right half-plane
{

s ∈ C

∣

∣

∣

∣

Re s >
log|D|
log b

− 1

}

and satisfies R(s) ≪ |s| uniformly on
{

s ∈ C

∣

∣

∣

∣

Re s ≥ log|D|
log b

− 1 + ε

}

.

Remark 1. It should be mentioned that D(s) is an instance of what is called an automatic Dirichlet
series in [1].

Proof. Note that

MD(b,D) = {bn0 + a0 |n0 ∈ MD(b,D) ∪ {0}, a0 ∈ D} \ {0}.
Therefore, we have

R(s) =
(

1 − |D|b−s
)

D(s)

=
∑

n∈MD(b,D)

∑

a∈D

(

1

(bn + a)s
− 1

(bn)s

)

+
∑

a∈D\{0}

1

as
.

So R(s) is a Dirichlet series again, which means that it is analytic within a right half-plane.
Hence, in order to prove the theorem, it is sufficient to show that the estimate R(s) ≪ |s| holds

(uniformly) for σ = Re s ≥ log|D|
log b − 1 + ε. To this end, note that

∑

a∈D

(

1

(bn)s
− 1

(bn + a)s

)

≪ |s|n−σ−1,

and this estimate holds uniformly as σ is restricted to a compact set. Furthermore, |MD(b,D) ∩
[bl−1, bl)| ≤ |D|l, so that we obtain

∑

n∈MD(b,D)

∑

a∈D

(

1

(bn)s
− 1

(bn + a)s

)

≪ |s|
∑

n∈MD(b,D)

n−σ−1
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≤ |s|
∞
∑

l=0

|D|l
b(l−1)(σ+1)

= |s|bσ+1 1

1 − |D|b−(σ+1)
< ∞

as long as |D|b−(σ+1) < 1 or σ > log |D|
log b − 1, and the estimate is uniform for

σ = Re s ≥ log|D|
log b

− 1 + ε.

�

Thus, in order to obtain asymptotic estimates for sums of the type
∑

m∈MD(b,D)

f(mη),

as given in Theorem 1, we can use the Mellin inversion formula together with Lemma 3. For a
survey on Mellin transforms we refer the reader to [9, 10, 20]. We denote the Mellin transform of
a function h(x) by

h∗(s) = M [h(x); s] =

∫ ∞

0

h(x)xs−1ds.

First of all, we want to know the asymptotics of η = η(n) in Theorem 1. Note that the Mellin
transform of f1(x) = x

ex+1 is given by

f∗
1 (s) = (1 − 2−s)Γ(s + 1)ζ(s + 1),

which is analytic for Re s > −1. By the properties of the Mellin transform, we have

M





∑

m∈MD(b,D)

mx

emx + 1
; s



 = (1 − 2−s)Γ(s + 1)ζ(s + 1)D(s)

Thus, shifting the path of integration in the Mellin inversion formula yields

∑

m∈MD(b,D)

m

eηm + 1
= η−α−1U1

(

log η

log b

)

+ O(η−α),

where α = log |D|
log b and U1 is a 1-periodic function given by its Fourier series (for details, see

Lemma 6 in Section 2)

U1(t) =
∑

k∈Z

1

log b

(

1 − 2−α+ 2kπi
log b

)

Γ

(

1 + α − 2kπi

log b

)

ζ

(

1 + α − 2kπi

log b

)

R

(

α − 2kπi

log b

)

exp(2kπit).

It follows that

η = n−1/(α+1)V

(

log n

log |D| + log b

)

+ O(n−2/(α+1)),

where V is also 1-periodic. Similarly, the Mellin transform of f2(x) = log(1 + e−x) is given by

f∗
2 (s) = (1 − 2−s)Γ(s)ζ(s + 1),

and we obtain
∑

m∈MD(b,D)

(

mη

emη + 1
+ log(1 + e−ηm)

)

= η−αU2

(

log η

log b

)

+ C + O(η1−α),

where U2 is a 1-periodic function and C a constant. Finally, the Mellin transform of f3(x) = x2ex

(ex+1)2

is given by

f∗
3 (s) = (1 − 2−s)Γ(s + 2)ζ(s + 1).

Summing up, we obtain the following asymptotic formula:
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Theorem 4. The number qMD(n) of partitions into distinct elements of MD(b,D) is asymptot-
ically

qMD(n) = n−(α+2)/(2α+2) exp

(

nα/(α+1)W1

(

log η

log |D| + log b

))

W2

(

log η

log |D| + log b

)

·
(

1 + O(n−min(α,1−α)/(α+1)+δ)
)

for some 1-periodic functions W1,W2.

Given this asymptotic result for the number of partitions, it is natural to consider distributions
as well. However, Hwang’s Theorem (Theorem 2) is not directly applicable since there is not only
a single pole on the abscissa of convergence of the relevant Dirichlet series, but rather a countable
set of poles, as can be seen from Lemma 3. Therefore, we aim to extend Hwang’s result in order to
make it applicable to partitions into integers with missing digits and similar sequences of integers
(see the examples in Section 4).

2. Preliminaries and statement of the main result

In the following, we typically consider the case that the sequence Λ is strictly increasing, i.e.

Λ1 < Λ2 < Λ3 < . . . ,

and so it will be convenient to write S for the set {Λ1, Λ2, Λ3, . . .} (e.g. the set of integers with
certain missing digits). However, all our theorems and proofs also apply in the case that S is a
multiset, i.e. elements are allowed to occur with a certain (finite) multiplicity. In order to study the
number of summands in partitions into distinct elements of S, we define the bivariate generating
function

Q(u, z) =
∏

m∈S
(1 + uzm) . (2.1)

It is clear that the power of u indicates the number of summands. For convenience, we mostly
work with the logarithm of Q and thus define the function

f(u, τ) = log Q(u, e−τ ) =
∑

m∈S
log
(

1 + ue−mτ
)

. (2.2)

We write D(s) for the Dirichlet generating function of S, i.e.,

D(s) =
∑

m∈S
m−s,

and we will use the notation

〈α, β〉 := {z ∈ C : α < Re z < β}

for strips in the complex plane. Throughout this paper, we will assume that S satisfies the following
conditions, which are slight modifications of Hwang’s conditions (M1)-(M3):

(M1’) D(s) converges in the half-plane Re s > α > 0 and can be analytically continued to
Re s ≥ α − ε with ε > 0. On the line Re s = α, D(s) has equidistant (the distance is
denoted by ω) simple poles at s = α + 2πikω with k ∈ Z; Ak is the residue of D(s) at
s = α +2πikω. Furthermore we assume that there are no further poles with Re s ≥ α− ε.

(M2’) There exists a sequence Tj → ∞ and a positive constant c1 such that

D(s) ≪ |Tj |c1

uniformly for all s ∈ 〈α − ε, α〉 with |Im s| = Tj . Furthermore we assume that D satisfies

D(α − ε + it) ≪ |t|c1 .
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(M3’) Let g(τ) =
∑

m∈S e−mτ , where τ = r + iy with r > 0 and −π ≤ y ≤ π. There exists a
positive constant c2 such that

g(r) − Re g(τ) ≥ c2

(

log
1

r

)2+4/α

uniformly for π/2 ≤ |y| ≤ π as r → 0+.

We will show that these conditions are sufficient for a central limit theorem as follows:

Theorem 5 (Main Theorem). Suppose that (M1’)–(M3’) hold. As in Theorem 2, let ̟n be the
number of summands of a random partition. Then ̟n is asymptotically normally distributed with
mean E(̟n) ∼ µn and variance V(̟n) ∼ σ2

n:

P

(

̟n − µn

σn
< x

)

=
1√
2π

∫ x

−∞
e−t2/2dt + o(1),

uniformly for all x as n → ∞. µn and σn are defined as follows:

µn =
∑

m∈S

1

eηm + 1
, (2.3)

σ2
n =

∑

m∈S

eηm

(eηm + 1)2
−

(

∑

m∈S
meηm

(eηm+1)2

)2

∑

m∈S
m2eηm

(eηm+1)2

, (2.4)

and η is implicitly given by

n =
∑

m∈S

m

eηm + 1
.

µn and σn satisfy the following asymptotic formulas (recall that ω is the distance between two poles
as defined in (M1’)):

µn ∼ nα/(1+α)Ψµ

(

ω log n

α + 1

)

,

σ2
n ∼ nα/(1+α)Ψσ

(

ω log n

α + 1

)

,

for certain 1-periodic functions Ψµ and Ψσ. Finally, we have the following exponential bounds for
the tails:

P

(

̟n − µn

σn
≥ x

)

≤
{

e−x2/2
(

1 + O((log n)−3)
)

if 0 ≤ x ≤ nα/(6α+6)/ log n,

e−nα/(6α+6)x/(2 log n)
(

1 + O((log n)−3)
)

if x ≥ nα/(6α+6)/ log n,

and the same inequalities for P

(

̟n−µn

σn
≤ −x

)

.

The proof makes use of the saddle point method that is applied to the generating function
Q(u, z) (cf. [13, 17]). Note that the definition of η is analogous to that in Theorem 1—as we
will see from the proof, this is precisely the choice for the saddle point. Harmonic sums over
all elements of S (as in the definitions of η, µn, σ2

n) will occur repeatedly, and so we will make
frequent use of the following important lemma:

Lemma 6 ([9, Theorem 4]). Let f(x) be continuous in (0,∞) with Mellin transform f∗(s) having
a nonempty fundamental strip 〈α, β〉.

Assume that f∗(s) admits a meromorphic continuation to the strip 〈γ, β〉 for some γ < α with
at most a countable set of poles P there, and is analytic on Re s = γ. Assume also that there
exists a real number η ∈ (α, β) and a sequence of horizontal segments |Im s| = Tj with Tj → +∞
such that

f∗(s) = O
(

|s|−r
)

with r > 1

holds on these segments uniformly for γ ≤ Re s ≤ η. If f∗(s) admits the singular expansion

f∗(s) ≍
∑

ξ∈P

Aξ

s − ξ
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for s ∈ 〈γ, α〉, then an asymptotic expansion of f(x) at 0 is

f(x) =
∑

ξ∈P

Aξx
−ξ + O

(

x−γ
)

.

In order to apply the Mellin calculus to the function f defined in (2.2), we need the Mellin
transform of log(1 + ue−x), which we denote by Y (u, s). The following lemma collects some of its
important properties.

Lemma 7 ([13, Lemma 1]). For each fixed u lying in the cut-plane C \(−∞,−1], the func-
tion Y (u, s) can be meromorphically continued into the whole s-plane with simple poles at s =
0,−1,−2, . . .. Moreover, Y (u, s) satisfies the estimate

|Y (u, σ + it)| ≪ e−(π/2−ε)|t| for any ε > 0 as |t| → +∞,

uniformly as σ and u are restricted to compact sets.

By partial integration of Y (u, s) we get

Y (u, s) =

∫ ∞

0

log(1 + ue−x)xs−1dx =
1

s

∫ ∞

0

1

u−1ex + 1
xsdx

and analogously

Y (u, s) =
1

s(s + 1)

∫ ∞

0

u−1ex

(u−1ex + 1)2
xs+1dx.

Note that the integrals can also be interpreted as Mellin transforms (of x
u−1ex+1 and x2u−1ex

(u−1ex+1)2 ,

respectively), which will be needed later.

3. Proof of the main theorem

In order to prove Theorem 5, we need an asymptotic formula for

Qn(u) = [zn]Q(u, z).

Using Cauchy’s residue theorem and the substitution z = e−(r+it), this can be written as

Qn(u) =
1

2πi

∮

|z|=e−r

z−n−1Q(u, z)dz =
enr

2π

∫ π

−π

exp(int + f(u, r + it))dt (3.1)

for any r > 0. Let δ > 0 be any fixed number in the unit interval. Throughout the proof, we
assume that δ ≤ u ≤ δ−1. Thus, “uniformly in u” means “uniformly as δ ≤ u ≤ δ−1”. Now we
apply the saddle-point method: in the following, r = r(n, u) is chosen in such a way that

∂(int + f(u, r + it))

∂t

∣

∣

∣

∣

t=0

= in − i
∑

m∈S

m

u−1erm + 1
= 0.

or equivalently

n =
∑

m∈S

m

u−1erm + 1
.

Note that the right hand side is strictly decreasing and thus bijective as a function of r. Therefore
there is a unique r that satisfies this equation. Furthermore, r is strictly decreasing as a function
of n (and tends to 0 as n → ∞) and strictly increasing as a function of u.

We can make use of Lemma 6 to find an asymptotic formula for the sum in the definition of r.
Recall that the Mellin transform of x

u−1ex+1 is given by

M
[

x

u−1ex + 1
; s

]

= sY (u, s),

and thus

M
[

∑

m∈S

mx

u−1exm + 1
; s

]

= sY (u, s)D(s).
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So Lemma 6 yields

n =
∑

m∈S

m

u−1erm + 1
=

1

r

∑

m∈S

rm

u−1erm + 1

=
1

r

∑

j∈Z

Aj(α + 2πijω)Y (u, α + 2πijω)r−(α+2πijω) + O(r−(α+1)+ε)

= r−(α+1)
∑

j∈Z

Aj(α + 2πijω)Y (u, α + 2πijω) exp(−2πijω log r) + O(r−(α+1)+ε)

= r−(α+1)Φ1 (u, ω log r) + O(r−(α+1)+ε)

for a 1-periodic function Φ1 that is given by the Fourier series

Φ1(u, v) =
∑

j∈Z

Aj(α + 2πijω)Y (u, α + 2πijω) exp(−2πijv).

The properties of Y summarized in Lemma 7 guarantee that this series is absolutely and uniformly
convergent and infinitely differentiable. Also note that

H(u, r) =
∑

m∈S

m

u−1erm + 1

is a positive and monotonic function of r. Therefore, Φ1(u, v) can never be 0: otherwise, there are
sequences r1,k and r2,k both tending to 0 such that

H(u, r1,k) ≪ r
−(α+1)+ε
1,k and H(u, r2,k) ≫ r

−(α+1)
2,k

(the latter simply follows from the fact that Φ1 is not identically 0), contradicting the monotonicity.
Thus, Φ1(u, v) must be bounded above and below by strictly positive constants (uniformly in u),
which means that r = Θ(n−1/(α+1)). More precisely, one has

r ∼ n− 1
α+1 Ψ1

(

u,
ω log n

α + 1

)

for a 1-periodic function Ψ1, which will be used later.
For our application of the saddle point method, we need a uniform estimate as t in the integral

representation (3.1) is away from 0. This is the main objective of the following two lemmas:

Lemma 8. For every integer ℓ ≥ 0 we have

h(X) =
∑

m≤X
m∈S

mℓ ≫ Xα+ℓ.

Proof. For a nonnegative integer k we set

Gk(X) :=
∑

m≤X
m∈S

mℓ
(

1 − m

X

)k

.

Sums of this type can be written as integrals by means of the Mellin transform (see [10, Theorem
2.1]):

Gk(X) =
k!

2πi

∫ c+i∞

c−i∞

D(s − ℓ)Xs

s(s + 1) . . . (s + k)
ds

for any c > α + ℓ. We choose k large enough (k > c1, where the constant c1 is taken as in (M2’))
so as to make the resulting integral converge and shift the line of integration to the left (collecting
residues at s = α + ℓ + 2πijω for every j ∈ Z) to obtain

Gk(X) = k!
∑

j∈Z

AjX
α+ℓ+2πijω

(α + ℓ + 2πijω)(α + ℓ + 1 + 2πijω) . . . (α + ℓ + k + 2πijω)

+
k!

2πi

∫ α+ℓ−ε+i∞

α+ℓ−ε−i∞

D(s − ℓ)Xs

s(s + 1) . . . (s + k)
ds
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= Xα+ℓΞk (ω log X) + O
(

Xα+ℓ−ε
)

,

where Ξk is a function of period 1, given by its Fourier series. Here, we made use of the fact that
the integral can be estimated as follows:

∣

∣

∣

∣

∣

∫ α+ℓ−ε+i∞

α+ℓ−ε−i∞

D(s − ℓ)Xs

s(s + 1) . . . (s + k)
ds

∣

∣

∣

∣

∣

≤ Xα+ℓ−ε

∫ α+ℓ−ε+i∞

α+ℓ−ε−i∞

∣

∣

∣

∣

D(s − ℓ)

s(s + 1) . . . (s + k)

∣

∣

∣

∣

ds

≪ Xα+ℓ−ε

∫ α+ℓ−ε+i∞

α+ℓ−ε−i∞
|s|c1−k−1 ds

≪ Xα+ℓ−ε.

Since Gk(X) is nonnegative for all X, Ξk(ω log X) must be nonnegative for sufficiently large X (and
thus for all X, since it is periodic). Now assume that Ξk(ω log X) is 0 for some X. Equivalently,

Gk(Xn)X−(α+ℓ)
n → 0

for Xn = Xen/ω. Note that

Gk(X) ≤ h(X) ≤ Gk(βX)

(

1 − 1

β

)−k

. (3.2)

for every k and β > 1. Therefore, we also have

Gk(Xn/β)X−(α+ℓ)
n → 0

for any β > 1, implying Ξk(ω(log X − log β)) = 0. But then, Ξk is identically 0, an obvious
contradiction. Hence, Ξk is bounded above and below by strictly positive constants. Now, the left
hand side inequality in (3.2) shows that h(X) ≫ Xα+ℓ, as claimed. �

The following simple corollary will be needed later:

Corollary 9. There is a constant C > 1 such that the cardinality of S ∩(X,CX] satisfies

|S ∩(X,CX]| ≫ Xα.

Proof. Set ℓ = 0 in the lemma; the proof shows that h(X) ≪ Xα holds as well as h(X) ≫ Xα.
Hence,

|S ∩(X,CX]| = h(CX) − h(X) ≫ Xα

for sufficiently large C. �

Lemma 10. For any constant c3 with 0 < c3 < α/2, there is a constant c4 such that

|Q(u, e−(r+iy))|
Q(u, e−r)

≤ exp

(

− c4u

(1 + u)2

(

log
1

r

)2
)

,

for r1+c3 ≤ |y| ≤ π as r → 0+.

Proof. We start by rewriting the quotient under consideration.
( |Q(u, e−(r+iy))|

Q(u, e−r)

)2

=
∏

m∈S

(

1 − 2ue−mr (1 − cos my)

(1 + ue−mr)2

)

≤ exp

(

− 2u

(1 + u)2

∑

m∈S
e−mr (1 − cos my)

)

.

Using the definition of g in (M3’) we set

G(r, y) := g(r) − Re g(r + iy) =
∑

m∈S

(

e−mr − Re e−m(r+iy)
)

=
∑

m∈S
e−mr (1 − cos my) .

Now (M3’) yields

G(r, y) ≥ c2

(

log
1

r

)2+4/α

for
π

2
≤ |y| ≤ π,
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and so it suffices to show

G(r, y) ≥ c5

(

log
1

r

)2

for some constant c5 > 0 uniformly for r1+c3 ≤ |y| ≤ π
2 as r → 0+.

We split this interval into three parts according to the size of |y|.

• r ≤ |y| ≤
(

log 1
r

)− 2
α : Note that for |t| ≤ π

1 − cos t ≥ 2

π2
t2.

Thus we can apply Lemma 8 to find

G(r, y) ≥
∑

1≤m≤|y|−1

m∈S

e−mr (1 − cos my) ≥
∑

1≤m≤|y|−1

m∈S

e−mr 2

π2
m2y2

≥ 2

π2
y2

∑

1≤m≤|y|−1

m∈S

e−
r
|y| m2 ≥ 2

π2
e−1y2 · c6|y|−(α+2)

≥ c5|y|−α ≥ c5

(

log
1

r

)2

if c5 is chosen sufficiently small.
• r1+c3 ≤ |y| ≤ r: In the same manner as before, we get

G(r, y) ≥
∑

1≤m≤r−1

m∈S

e−mr(1 − cos my) ≥
∑

1≤m≤r−1

m∈S

2

π2
e−1y2m2

≥ 2

π2
e−1y2 · c6r

−(α+2) ≥ c7r
2c3−α ≥ c5

(

log
1

r

)2

.

•
(

log 1
r

)− 2
α ≤ |y| ≤ π

2 : It is clear that there exists an integer ℓ such that

π

2
≤ 2ℓ|y| ≤ π.

From the inequality 1 − cos θ ≥ 1
4 (1 − cos 2θ) we get by iteration

1 − cos θ ≥ 4−ℓ(1 − cos 2ℓθ),

which allows us to apply (M3’) again:

G(r, y) ≥ 4−ℓ
∑

m∈S
e−mr(1 − cos 2ℓmy) ≥ 4−ℓc2

(

log
1

r

)2+4/α

≥ c2

π2
y2

(

log
1

r

)2+4/α

≥ c2

π2

(

log
1

r

)2

,

so that we obtain the desired estimate in this case as well.

�

Now we return to the integral representation (3.1): choose c3 such that α
3 < c3 < α

2 , e.g.

c3 = 3α
7 , and split the interval into the part |t| ≤ r1+c3 and the remaining two intervals. For the

latter, Lemma 10 shows that

∫ π

r1+c3

exp(int + f(u, r + it))dt ≪ exp

(

f(u, r) − c8

(

log
1

r

)2
)

≪ exp(f(u, r) − c9 log2 n)
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for certain positive constants c8 and c9 (uniformly in u), and the same estimate holds for −π ≤
t ≤ −r1+c3 . For the central integral, we have to expand f(u, r + it) around t = 0: by our choice
of r, the first derivative with respect to t is −in, and the second derivative is given by

−B2 = −B2(u, r) =
∂2f(u, r + it)

∂2t

∣

∣

∣

∣

t=0

= −
∑

m∈S

m2u−1erm

(u−1erm + 1)2
.

Now we can apply the Mellin transform technique again: the transform of x2u−1ex

(u−1ex+1)2 is given by

M
[

x2u−1ex

(u−1ex + 1)2
; s

]

= s(s + 1)Y (u, s),

and thus

M
[

∑

m∈S

x2m2u−1exm

(u−1exm + 1)2
; s

]

= s(s + 1)Y (u, s)D(s).

Thus, applying Lemma 6 yields

B2 =
∑

m∈S

m2u−1erm

(u−1erm + 1)2
= r−(α+2)Φ2 (u, ω log r) + O(r−(α+2)+ε),

where Φ2 is a periodic function; again, a simple argument shows that Φ2 is bounded below by a
positive constant (uniformly for δ ≤ u ≤ δ−1, as it is the case for all our estimates), implying that
B2 is of order r−(α+2): just note that

B2 =
∑

m∈S

m2u−1erm

(u−1erm + 1)2
≥

∑

m≤r−1

m∈S

m2u−1erm

(u−1erm + 1)2

≥
∑

m≤r−1

m∈S

δm2

(δ−1e + 1)2
≫

∑

m≤r−1

m∈S

m2 ≫ r−(α+2)

by Lemma 8. Finally, we estimate the third derivative as follows: it is given by

∂3f(u, r + it)

∂3t
= −i

∑

m∈S

m3u−1emr(1+it)
(

1 − u−1emr(1+it)
)

(u−1emr(1+it) + 1)3
.

Now let m0 = r−(1+c10) for some constant c10 > 0, and write v = u−1 for short. Then we split up
the sum into two parts according to whether m ≤ m0 or not. For the latter we get

∣

∣

∣

∣

∣

∣

∣

∑

m>m0
m∈S

m3vemr(1+it)
(

1 − vemr(1+it)
)

(vemr(1+it) + 1)3

∣

∣

∣

∣

∣

∣

∣

≤
∑

m>m0
m∈S

m3vemr (1 + vemr)

|vemr(1+it) + 1|3

≤
∑

m>m0
m∈S

m3vemr (1 + vemr)

(vemr − 1)3
≪

∑

m>m0
m∈S

m3

emr
≪ r−4−3c10

er−c10
.

For the remaining sum we note that

|1 + vemr(1+it)| ≥ (1 + vemr) cos

(

mrt

2

)

.

Therefore we get
∣

∣

∣

∣

∣

∣

∣

∑

m≤m0
m∈S

m3vemr(1+it)
(

1 − vemr(1+it)
)

(vemr(1+it) + 1)3

∣

∣

∣

∣

∣

∣

∣

≤
∑

m≤m0
m∈S

m3vemr (1 + vemr)

|vemr(1+it) + 1|3

≤
∑

m≤m0
m∈S

m3vemr (1 + vemr)

(vemr + 1)3
(

1 + O
(

(rmt)2
))

≤
∑

m≤m0
m∈S

m3

vemr

(

1 + O
(

(rmt)2
))
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≤
∑

m∈S

m3

vemr
+ O

(

∑

m∈S

m5r2t2

emr

)

≪ r−3−α + r−3−αt2,

where the last estimate is obtained by means of Lemma 6 again. So finally,

∂3f(u, r + it)

∂3t
≪ r−3−α

for |t| ≤ r1+c3 , and so we have the expansion

f(u, r + it) = f(u, r) − int − B2

2
t2 + O

(

r−3−αt3
)

.

Hence, the corresponding integral can be estimated as follows:

enr

2π

∫ r1+c3

−r1+c3

exp(int + f(u, r + it))dt

=
enr+f(u,r)

2π

∫ r1+c3

−r1+c3

exp

(

−B2

2
t2 + O

(

r3c3−α
)

)

dt

=
enr+f(u,r)

2π

(

∫ r1+c3

−r1+c3

exp

(

−B2

2
t2
)

dt

)

(

1 + O
(

r2α/7
))

=
enr+f(u,r)

2π

(

∫ r1+c3

−r1+c3

exp

(

−B2

2
t2
)

dt

)

(

1 + O
(

n−2α/(7α+7)
))

by our choice of c3. Also note that
∫ r1+c3

−r1+c3

exp

(

−B2

2
t2
)

dt =

∫ ∞

−∞
exp

(

−B2

2
t2
)

dt − 2

∫ ∞

r1+c3

exp

(

−B2

2
t2
)

dt

=

√
2π

B
+ O

(∫ ∞

r1+c3

exp

(

−B2r1+c3

2
t

)

dt

)

=

√
2π

B
+ O

(

r−1−c3B−2 exp

(

−B2r2(1+c3)

2

))

.

We know that B2 ≫ r−(α+2), which implies

B2r2(1+c3) ≫ r2c3−α = r−α/7 ≫ nα/(7α+7).

Hence, the error term tends to 0 faster than any power of n.
Putting everything together, we find that

Qn(u) =
1√

2πB2
enr+f(u,r)

(

1 + O
(

n−2α/(7α+7)
))

uniformly in u. Now we study the moment generating function of the random variable ̟n (the
number of parts in a random partition), which can be expressed in terms of Qn(u): let Mn(t) =
E(e(̟n−µn)t/σn), where t is real and µn and σn are chosen as in (2.3) and (2.4). Then we get

Mn(t) = exp

(

−µnt

σn

)

Qn(et/σn)

Qn(1)

=

√

B2(1, r(n, 1))

B2(et/σn , r(n, et/σn))
exp

(

− µnt

σn
+ nr(n, et/σn) + f(et/σn , r(n, et/σn))

− nr(n, 1) − f(1, r(n, 1)) + O
(

n−2α/(7α+7)
))

.

(3.3)

Now, we want to determine the expansion around t = 0; for this purpose, we need the partial
derivatives of r(n, u) with respect to u: recall that r = r(n, u) was defined by

n = −fτ (u, r) =
∑

m∈S

m

u−1erm + 1
.
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Hence, the partial derivatives can be determined by means of implicit differentiation:

ru = ru(n, u) = −fuτ (u, r)

fττ (u, r)
=

∑

m∈S
memr

(emr+u)2
∑

m∈S
um2emr

(emr+u)2

and similarly

ruu = ruu(n, u) =
−fτττ (u, r)fuτ (u, r)2 + 2fuττ (u, r)fuτ (u, r)fττ (u, r) − fuuτ (u, r)fττ (u, r)2

fττ (u, r)3
,

ruuu = ruuu(n, u) = fττ (u, r)−5
(

− fuuuτ (u, r)fττ (u, r)4

+ (3fuuττ (u, r)fuτ (u, r) + 3fuuτ (u, r)fuττ (u, r)) fττ (u, r)3

+
(

−3fuτττ (u, r)fuτ (u, r)2 − 6fuττ (u, r)2fuτ (u, r)

−3fuuτ (u, r)fτττ (u, r)fuτ (u, r)) fττ (u, r)2

+
(

fττττ (u, r)fuτ (u, r)3 + 9fuττ (u, r)fτττ (u, r)fuτ (u, r)2
)

fττ (u, r)

− 3fuτ (u, r)3fτττ (u, r)2
)

,

where the derivatives of f are given as follows:

fuτ (u, r) = −
∑

m∈S

memr

(emr + u)2
≪ r−(1+α) ≪ n,

fττ (u, r) =
∑

m∈S

um2emr

(emr + u)2
≪ r−(2+α) ≪ n1+1/(1+α),

fuuτ (u, r) =
∑

m∈S

2memr

(emr + u)3
≪ r−(1+α) ≪ n,

fuττ (u, r) =
∑

m∈S

m2emr(emr − u)

(emr + u)3
≪ r−(2+α) ≪ n1+1/(1+α),

fτττ (u, r) = −
∑

m∈S

um3emr(emr − u)

(emr + u)3
≪ r−(3+α) ≪ n1+2/(1+α),

fuuuτ (u, r) = −
∑

m∈S

6memr

(emr + u)4
≪ r−(1+α) ≪ n,

fuuττ (u, r) = −
∑

m∈S

2m2emr(2emr − u)

(emr + u)4
≪ r−(2+α) ≪ n1+1/(1+α),

fuτττ (u, r) = −
∑

m∈S

m3emr(e2mr − 4uemr + u2)

(emr + u)4
≪ r−(3+α) ≪ n1+2/(1+α),

fττττ (u, r) =
∑

m∈S

um4emr(e2mr − 4uemr + u2)

(emr + u)4
≪ r−(4+α) ≪ n1+3/(1+α).

The asymptotic estimates are all obtained by means of the usual Mellin transform method. Fur-
thermore, note that

fττ (u, r) = B2(u, r) ≫ r−(2+α) ≫ n1+1/(1+α),

from which it follows that ru, ruu, ruuu ≪ n−1/(1+α), all uniformly in u. Thus, we have the
following expansions:

r(n, et/σn) − r(n, 1) = ru(n, 1) · t

σn
+

ru(n, 1) + ruu(n, 1)

2
·
(

t

σn

)2

+ O
(

n−1/(1+α) t3

σ3
n

)

and

f(et/σn , r(n, et/σn)) − f(1, r(n, 1)) =
(

fτ (1, r(n, 1))ru(n, 1) + fu(1, r(n, 1))
)

· t

σn
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+
1

2

(

fτ (1, r(n, 1))(ru(n, 1) + ruu(n, 1)) + fττ (1, r(n, 1))ru(n, 1)2 + 2fuτ (1, r(n, 1))ru(n, 1)

+ fu(1, r(n, 1)) + fuu(1, r(n, 1))
)

·
(

t

σn

)2

+ O
(

nα/(1+α) t3

σ3
n

)

.

Altogether, this means that the exponent in (3.3) can be written as
(

nru(n, 1) + fτ (1, η)ru(n, 1) + fu(1, η) − µn

)

· t

σn

+
1

2

(

n(ru(n, 1) + ruu(n, 1)) + fτ (1, η)(ru(n, 1) + ruu(n, 1)) + fττ (1, η)ru(n, 1)2

+ 2fuτ (1, η)ru(n, 1) + fu(1, η) + fuu(1, η)
)

·
(

t

σn

)2

+ O
(

nα/(1+α) t3

σ3
n

+ n−2α/(7α+7)

)

,

where we use η as an abbreviation for r(n, 1). Now, we make use of the fact that n = −fτ (1, η)

and that ru(n, 1) = − fuτ (1,η)
fττ (1,η) to simplify this expression:

(

fu(1, η) − µn

)

· t

σn
+

1

2

(

fu(1, η) + fuu(1, η) − fuτ (1, η)2

fττ (1, η)

)

·
(

t

σn

)2

+ O
(

nα/(1+α) t3

σ3
n

+ n−2α/(7α+7)

)

.

It is not difficult to show in a similar way that

B2(1, r(n, 1))

B2(et/σn , r(n, et/σn))
= 1 + O

(

t

σn

)

,

and so we obtain the following asymptotic formula for the moment generating function from (3.3):

Mn(t) = exp

(

(

fu(1, η) − µn

)

· t

σn
+

1

2

(

fu(1, η) + fuu(1, η) − fuτ (1, η)2

fττ (1, η)

)

·
(

t

σn

)2

+O
(

t

σn
+ nα/(1+α) t3

σ3
n

+ n−2α/(7α+7)

))

.

Now, note that µn and σn were chosen in such a way that

µn = fu(1, η) =
∑

m∈S

1

eηm + 1
,

σ2
n = fu(1, η) + fuu(1, η) − fuτ (1, η)2

fττ (1, η)
=
∑

m∈S

eηm

(eηm + 1)2
−

(

∑

m∈S
meηm

(eηm+1)2

)2

∑

m∈S
m2eηm

(eηm+1)2

.

We only have to prove that the error term is small, and so we need a lower estimate for σn: first
of all, our usual Mellin transform technique shows that

µn = η−αΦµ (ω log η) + O
(

η−α+ε
)

∼ nα/(1+α)Ψµ

(

ω log n

α + 1

)

and

σ2
n = η−αΦσ (ω log η) + O

(

η−α+ε
)

∼ nα/(1+α)Ψσ

(

ω log n

α + 1

)

for certain 1-periodic functions Φµ, Φσ and Ψµ, Ψσ (note that since log η ∼ − log n
α+1 , the periods

differ by a factor of α + 1).
µn =

∑

m∈S
1

eηm+1 is obviously a positive monotonic function of η, showing immediately that

Φµ and Ψµ must be bounded above and below by positive constants (in the same way as it was

shown that r ≫ n−1/(1+α)). However, this approach does not apply that easily to σn (in particular,
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it is less obvious that Φσ cannot be identically 0), so we proceed a little differently: using the

abbreviation q(x) = ex

(ex+1)2 , we can write the numerator of σ2
n in (2.4) as

(

∑

m∈S

eηm

(eηm + 1)2

)(

∑

m∈S

m2eηm

(eηm + 1)2

)

−
(

∑

m∈S

meηm

(eηm + 1)2

)2

=
∑

m1∈S

∑

m2∈S
(m2

2 − m1m2)q(ηm1)q(ηm2)

=
∑

m1∈S

∑

m2>m1
m2∈S

(m2 − m1)
2q(ηm1)q(ηm2)

=
1

2

∑

m1∈S

∑

m2∈S
(m2 − m1)

2q(ηm1)q(ηm2).

This can be estimated as follows:

1

2

∑

m1∈S

∑

m2∈S
(m2 − m1)

2q(ηm1)q(ηm2) ≥
1

2

∑

m1≤η−1/2
m1∈S

∑

η−1≤m2≤Cη−1

m2∈S

(m2 − m1)
2q(ηm1)q(ηm2)

≥ 1

2

∑

m1≤η−1/2
m1∈S

∑

η−1≤m2≤Cη−1

m2∈S

1

4η2
q(ηm1)q(ηm2)

≫ η−2









∑

m1≤η−1/2
m1∈S

1

















∑

η−1≤m2≤Cη−1

m2∈S

1









≫ η−2−2α

by Lemma 8 and the corollary thereafter. The denominator has already been shown earlier to be
of order η−2−α. Hence, σ2

n ≫ η−α ≫ nα/(1+α). Putting everything together, we arrive at

Mn(t) = exp

(

t2

2
+ O

(

n−α/(2+2α)(t + t3) + n−2α/(7α+7)
)

)

= exp

(

t2

2
+ O

(

n−2α/(7α+7)
)

)

for bounded t. Now, Curtiss’s Theorem [4] shows that the distribution of ̟n is indeed asymptoti-
cally normal. For the remaining parts of the theorem, we can again follow the lines of Hwang [13]:
note that if t = o(nα/(6α+6)), the above equation, together with Markov’s inequality, yields

P

(

̟n − µn

σn
≥ x

)

≤ e−txMn(t)

= e−tx+t2/2
(

1 + O
(

n−α/(2+2α)(t + t3) + n−2α/(7α+7)
))

.

We set T = nα/(6α+6)/ log n and t = x for x ≤ T (minimizing −tx + t2/2) to obtain

P

(

̟n − µn

σn
≥ x

)

≤ e−x2/2
(

1 + O
(

(log n)−3
))

and for x ≥ T , by setting t = T ,

P

(

̟n − µn

σn
≥ x

)

≤ e−Tx/2
(

1 + O
(

(log n)−3
))

.

The probability P

(

̟n−µn

σn
≤ −x

)

can be estimated in an analogous way. Finally, we can also

apply Hwang’s method that was used in [13] to show that the mean and variance of ̟n are indeed
asymptotic to µn and σ2

n respectively.
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Remark 2. If the only pole of the Dirichlet series D(s) is at s = α (so that the periodic functions
Φµ and Φσ are actually constant), we obtain the asymptotic expressions for µn and σ2

n given in
Theorem 2: in this case, Lemma 6 yields

n =
∑

m∈S

m

eηm + 1
∼ A0(1 − 2−α)Γ(α + 1)ζ(α + 1)η−(α+1) = καη−(α+1),

where κ is taken as in Theorem 2, and

µn =
∑

m∈S

1

eηm + 1
∼ A0(1 − 21−α)Γ(α)ζ(α)η−α

∼ A0(1 − 21−α)Γ(α)ζ(α)(κα)−α/(α+1)nα/(α+1)

= (κα)1/(α+1) (1 − 21−α)ζ(α)

α(1 − 2−α)ζ(α + 1)
nα/(α+1),

and an asymptotic formula for σ2
n follows in a similar manner.

Remark 3. It might be possible to relax the conditions of our theorem, in particular (M1’), even
further, so that the poles do not necessarily have to be evenly spaced. However, we are not aware
of any natural example for which this actually occurs. Finally, the core of the proof, which is the
application of the saddle point method, is in principle also applicable if the Dirichlet series has
more complicated singularities (e.g. if S is the set of all primes), as long as one is able to obtain
sufficiently strong upper and lower estimates for the harmonic sums involved.

4. Examples

As mentioned in the introduction, our initial motivating example was the set of integers with
certain missing digits. However, there are also other natural examples for which Theorem 5 is
applicable. At the end of this section, we also exhibit an example where our theorem fails because
one of the conditions does not hold.

4.1. Missing digits. Recall that MD(b,D) denotes the set of positive integers with the property
that all digits in the b-ary representation come from the set D. Lemma 3 shows immediately

that condition (M1’) is satisfied, since we have simple poles at α + 2πikω with α = log|D|
log b and

ω = (log b)−1. (M2’) is also obvious in view of Lemma 3. Condition (M3’) can also be proved by
elementary means: for r > 0 and π

2 ≤ |y| ≤ π, choose k in such a way that bk ≤ r−1 < bk+1. Then
we have

g(r) − Re g(r + iy) =
∑

m∈S
e−mr(1 − cos(my)) ≥

∑

m<bk

m∈S

e−mr(1 − cos(my))

≥ e−1
∑

m<bk

m∈S

(1 − cos(my)) = e−1 Re
∑

m<bk

m∈S

(1 − exp(imy))

= e−1 Re



|D|k −
k−1
∏

j=0

∑

d∈D

exp(idbjy)



 ≥ e−1



|D|k −

∣

∣

∣

∣

∣

∣

k−1
∏

j=0

∑

d∈D

exp(idbjy)

∣

∣

∣

∣

∣

∣





≥ e−1

(

|D|k −
∣

∣

∣

∣

∣

∑

d∈D

exp(idy)

∣

∣

∣

∣

∣

|D|k−1

)

≥ e−1

(

1 − 1

|D| sup
π
2 ≤|y|≤π

∣

∣

∣

∣

∣

∑

d∈D

exp(idy)

∣

∣

∣

∣

∣

)

|D|k

≫ r− log |D|/ log b,

which proves (M3’). Note that
∣

∣

∣

∣

∣

∑

d∈D

exp(idy)

∣

∣

∣

∣

∣

< |D|

for π
2 ≤ |y| ≤ π: Since it was assumed that the digits in D do not have a common divisor > 1, dy

cannot be a multiple of 2π for all d.
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Figure 1. Periodic fluctuations of the mean in an example: n−α/(1+α)
E(̟n)

(black dots) and the periodic function Ψµ (gray line)

Figure 1 illustrates the periodic fluctuations in an example: here, the set of integers which do
not contain the digit 2 in their ternary representation is considered. The plot shows the normalized
mean of the length (i.e. n−α/(1+α)

E(̟n), where α = log 2
log 3 in this case) on a logarithmic scale; the

main term of the asymptotical formula is shown for comparison.

4.2. Missing blocks. The preceding example can easily be extended to integers with miss-
ing blocks in their digital expansion, such as the so-called “Fibbinary numbers” (see [19], se-
quence A003714, or [2]), i.e., integers whose binary representation does not contain the block 11:
{1, 2, 4, 5, 8, 9, 10, 16, . . .}. Write F for this set:

F :=

{

k
∑

i=0

ai2
i

∣

∣

∣

∣

∣

k ∈ N, ai ∈ {0, 1}, ai · ai+1 = 0

}

.

It is not difficult to show that the associated Dirichlet series satisfies our hypotheses (M1’)-(M3’):
noting that

F = 2F ∪ (4F + 1) ∪ {1},
we get

(

1 − 2−s − 4−s
)

D(s) = 1 +
∑

m∈F
(4m + 1)−s − (4m)−s

≪ 1 + |s|
∑

m∈F
m−(Re s+1),

which converges for Re s > 0. Therefore, we have

D(s) =
(

1 − 2−s − 4−s
)−1

R(s)

for a Dirichlet series R(s) that satisfies R(s) ≪ |s| uniformly for Re s ≥ ε. Hence α = log((
√

5+1)/2)
log 2 ,

and ω = 1
log 2 . Conditions (M1’) and (M2’) are satisfied as before. Furthermore, in order to prove

that (M3’) is also fulfilled, we note that

MD(4, {0, 1}) ⊆ F ,

and so the considerations of the previous example show that
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g(r) − Re g(r + iy) =
∑

m∈F
e−mr(1 − cos my) ≥

∑

m∈MD(4,{0,1})
e−mr(1 − cos my) ≫ r−1/2.

4.3. Numbers with even/odd length. Let us now consider numbers whose b-ary representation
has odd length: we obtain the sequence

{1, 4, 5, 6, 7, 16, 17, . . .}
in the binary case, which is Sloane’s A053738 [19]. Of course, this example can be generalized in
many directions as well. Write L for the set of all such numbers, i.e.

L :=

{

2k
∑

i=0

aib
i

∣

∣

∣

∣

∣

k ∈ N, ai ∈ {0, 1, . . . , b − 1}, a2k 6= 0

}

.

Thus we get for the Dirichlet generating function

D(s) =
∑

k≥0

b2k+1−1
∑

m=b2k

m−s.

Noting that

L =
b2−1
⋃

i=0

(b2L + i) ∪ {1, . . . , b − 1},

we find

D(s) =

b2−1
∑

i=0

∑

m∈L

(

b2m + i
)−s

+

b−1
∑

m=1

m−s

= b2−2sD(s) +

b−1
∑

m=1

m−s +

b2−1
∑

i=0

∑

m∈L

(

(

b2m + i
)−s −

(

b2m
)−s
)

= b2−2sD(s) + R(s).

By the same method as above we see that R(s) converges for Re s > 0, and we get

D(s) = (1 − b2−2s)−1R(s),

which has poles at s = 1 + πi
log b . As before, (M1’) and (M2’) hold with α = 1 and ω = 1

2 log b . In

order to prove that (M3’) holds as well, we can use an elementary argument: choose K such that
b2K+1 ≤ r−1 < b2K+3. Then we have

g(r) − Re g(r + iy) =
∑

k≥0

b2k+1−1
∑

m=b2k

e−mr(1 − cos my) ≥
b2K+1−1
∑

m=b2K

e−mr(1 − cos my)

≥ e−1
b2K+1−1
∑

m=b2K

(1 − cos my)

= e−1

(

(b − 1)b2K − sin((b2K+1 − 1/2)y) − sin((b2K − 1/2)y)

2 sin(y/2)

)

= e−1(b − 1)b2K + O(1) ≫ r−1.

4.4. Numbers with restricted sum of digits. Numbers whose b-ary sum of digits has to satisfy
a certain congruence have been studied by Gel’fond [11] and Mauduit and Sárközy [15]. Their
additive properties have been discussed in a paper by Thuswaldner and Tichy [21] and subsequent
papers. This is actually an example for which there is only a single pole: it is not difficult to
show that the Dirichlet series associated with the set of all integers whose b-ary sum of digits is
≡ h mod k is essentially 1

k ζ(s). Hence, α = 1, and the periodic functions Ψµ and Ψσ are actually
constants. Let us illustrate this in the binary case: let C0 and C1 be the sets of positive integers
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for which the binary sum of digits is even resp. odd, and let D0(s) and D1(s) be the associated
Dirichlet series. Then,

C0 = 2C0 ∪ (2C1 + 1)

and thus

D0(s) =
∑

m∈C0

(2m)−s +
∑

m∈C1

(2m + 1)−s = 2−s(D0(s) + D1(s)) +
∑

m∈C1

(

(2m + 1)−s − (2m)−s
)

= 2−sζ(s) +
∑

m∈C1

(2m)−s
∑

k≥1

(−s

k

)

(2m)−k = 2−sζ(s) +
∑

k≥1

(−s

k

)

2−(s+k)D1(s + k).

Remark 4. In all the aforementioned examples, one can also work with the squares, cubes, etc.
of the numbers in S, since the associated Dirichlet series is essentially the same. There are many
other examples of fairly natural sets of integers whose associated Dirichlet series has equidistant
poles on a line of the form Re s = α; for instance, consider palindromes: the binary palindromes
are

1, 3, 5, 7, 9, 15, 17, 21, . . .

(Sloane’s A006995 [19]). Since all of them are odd, the length of a partition of n will always have
the same parity as n, but the central limit theorem still holds. Another example are numbers
whose digital representation is the juxtaposition of two identical strings: in base 2, these are

3, 10, 15, 36, 45, 54, 63, 136, . . .

(Sloane’s A020330 [19]). In all these cases, (M1’) and (M2’) are fairly easy to check, proving (M3’)
is the difficult part.

Let us finally consider a trivial example for which (M1’) and (M2’) are satisfied, but (M3’) is
not:

4.5. An example that does not satisfy all conditions. Finally, we want to discuss an ex-
ample of a sequence that does not satisfy all of our conditions. Let us consider the sequence
1, 4, 4, 16, 16, 16, 16, 64, . . ., i.e. 4k appears with multiplicity 2k. The corresponding Dirichlet series
is extremely simple and obviously satisfies (M1’) and (M2’) (with α = 1

2 and ω = 1
2 log 2 ):

D(s) =
∑

k≥0

2k

4ks
=

1

1 − 21−2s
.

(M3’) is violated, however, and there are even infinitely many integers which cannot be partitioned
in this case (all those which are ≡ 2, 3 mod 4, for instance), so that Theorem 5 cannot hold any
longer.
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