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Abstract

The Fibonacci number of a graph is the number of independent vertex subsets. In
this paper, we investigate trees with large Fibonacci number. In particular, we show
that all trees with n edges and Fibonacci number > 2n−1 + 5 have diameter ≤ 4
and determine the order of these trees with respect to their Fibonacci numbers.
Furthermore, it is shown that the average Fibonacci number of a star-like tree (i.e.
diameter ≤ 4) is asymptotically A·2n ·exp(B

√
n)·n3/4 for constants A,B as n → ∞.

This is proved by using a natural correspondence between partitions of integers and
star-like trees.
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1 Introduction

Let G = (V (G), E(G)) denote a graph with vertex set V (G) and edge set
E(G). All graphs considered here are finite and simple. In general we will use
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the terminology introduced in [5]. We will write G \ {v1, v2, . . .} for the graph
which results from deleting the vertices v1, v2, . . . ∈ V (G) and all edges incident
with them, and we will write G \ {e1, e2, . . .} for the graph (V (G), E(G) \
{e1, e2, . . .}), where e1, e2, . . . ∈ E(G).

For a graph G, its Fibonacci number – simply denoted by F (G) – is defined
as the number of subsets of V (G) in which no two vertices are adjacent in
G, i.e. in graph-theoretical terminology, the number of independent sets of G,
including the empty set. The concept of the Fibonacci number for a graph was
introduced in [28] and discussed in several papers [17,18]. Paper [17] investi-
gated the Fibonacci number of binary trees (and more generally, t-ary and
simple generated trees) including asymptotic results for n = |E(G)| → ∞.
In [28] it was observed that the star Sn with n edges has maximal Fibonacci
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Fig. 1. The star and the path.

number among all trees with n edges and F (Sn) = 2n + 1. Furthermore it
was shown that the path Pn with n edges is the tree with minimal Fibonacci
number among all trees with n edges and F (Pn) = fn+3, where f0 = 0, f1 = 1
and fn+1 = fn + fn−1 for n > 1 denotes the sequence of Fibonacci numbers.

A related, but far more difficult problem is the question of finding the max-
imum number of maximal independent sets in a graph, which was settled
by Moon and Moser [25] and independently by Erdős. In a series of papers,
analogous results were determined for special types of graphs, including trees,
forests and connected graphs (cf. [11,12,29,34]).

For the number of independent sets, bounds for several classes of graphs were
given. For instance, Alameddine [1] considered maximal outerplanar graphs,
Dutton et al. [9] gave bounds involving the maximum number of independent
edges, and Liu [23] studied certain classes of connected graphs.

A concept that is highly related to the Fibonacci number is the independence
polynomial (cf. [6,16]), a polynomial whose k-th coefficient is the number of
independent subsets of size k. It is obvious that the Fibonacci number is
exactly the value at 1.

A mathematical application for the number of independent subsets is given in
group theory: a subset S of an additive group is called sum-free if it contains
no elements x, y, z such that x + y = z (cf. [7,30]). The question of bounding
the number of sum-free sets is connected to the number of independent sets in
the corresponding Cayley graphs. In fact, from a theorem of Alon [2] (every

2



k-regular graph on n vertices has at most 2(1/2+ε(k))n independent subsets,
where ε(k) tends to 0 as k → ∞), it follows that there are 2(1/2+o(1))n sum-
free subsets of {1, 2, . . . , n}. Alon’s result was generalized to hypergraphs in a
recent paper of Ordentlich and Roth [26].

It is of particular interest to determine the number of independent sets of a
grid graph, which is of importance in statistical physics (cf. [4]). It is known
that the Fibonacci number of a (n, m)-grid graph grows with αmn, where
α = 1.503048082 is the so-called hard square entropy constant. The bound for
this constant was successively improved by Weber [33], Engel [10] and Calkin
and Wilf [8].

There is yet another application for the concept of the Fibonacci number
of a graph in theoretical chemistry. For a molecular graph, this number was
extensively studied in the monograph [24] and in various subsequent papers
[19,32]. There the chemical use of the Fibonacci number F (G) is demonstrated
and the number is called σ-index or Merrifield-Simmons index and it is denoted
by σ(G).

The σ-index is introduced as a map from the set of chemical compounds
represented by graphs to the set of real numbers. Experimental results show
that the σ-index (and various similar index functions) is closely correlated
with some physicochemical characteristics. Of recent interest in combinatorial
chemistry are the corresponding inverse problems: given the value of the σ-
index, one wants to design chemical compounds (given as graphs or trees)
having that index value. The inverse problem has applications in the design
of combinatorial libraries for drug discovery.

In [19] the authors established an algorithm for computing the σ-index of a
given tree. Furthermore they investigated the inverse problem for the σ-index
(and related index functions) and they also established a polynomial time
algorithm for constructing a tree with given σ-index (provided that such a
tree exists). In fact, it is not known whether there exists a tree with given
σ-index s for all but finitely many positive integers s, even though the remark
after Definition 4 suggests this. However, it is known that every positive integer
is the number of independent subsets of a bipartite graph (cf. Linek [22]).

For a more detailed study of the properties of the Merrifield-Simmons index
we refer to the monograph [24].

In the present paper we are interested in trees with n edges and large Fibonacci
numbers. We already know the maximal tree with respect to its Fibonacci
number; it is the star Sn. In the main result of the paper we will determine
all trees T with n edges satisfying

2n−1 + 5 = F (CSn) ≤ F (T ) ≤ F (Sn) = 2n + 1, (1)
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where CSn denotes the “Christmas star” with n edges: it consists of a star
with arbitrarily many rays and a “tail” of four edges connected to the center
of the star (thus, its diameter is 5). CS11 is shown in Figure 2. Similar results,
obtained by somewhat different methods, are due to Lin and Lin [21] and
Wang et al. [20].
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Fig. 2. The “Christmas star” CS11.

It will be shown that the trees which satisfy inequality (1) belong to a family
of trees (which we call “star-like”) that corresponds to partitions of n into pos-
itive integers. We also include an asymptotic result (for n → ∞) concerning
the average Fibonacci number of these star-like trees. For the basic proper-
ties concerning partitions we refer to [3]. In particular, the famous Hardy-
Ramanujan-Rademacher theorem ([3, Theorem 5.1]) plays an important role
in our proofs.

Theorem 0

p(n) ∼
exp

(

π
√

2n/3
)

4
√

3n
,

where

p(n) = |{(c1, . . . , cd) : c1 ≥ . . . ≥ cd, c1 + · · · + cd = n, ci ≥ 1, d ∈ N}|

denotes the number of partitions of n into positive numbers.

In Section 2 we introduce the basic concepts and prove some auxiliary results
concerning graphs and partitions. Section 3 contains a proof of the main theo-
rem. The proof depends on ordering star-like trees by their Fibonacci numbers.
Section 4 is devoted to the asymptotic results and in the final Section 5 we
mention some open problems.

2 Notation and preliminary results

In this paper we will only consider trees T . As in the introduction, the Fi-
bonacci number of T is denoted by F (T ).

Definition 1 A tree is called star-like if it has diameter ≤ 4.
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Definition 2 Let (c1, . . . , cd) be a partition of n. The star-like tree assigned
to this partition is the tree which is constructed in the following way (cf.
Figure 3):

• let S1, . . . , Sd be stars with c1 − 1, . . . , cd − 1 edges respectively, and let
v1, . . . , vd be their centers.

• add a vertex v to the union S1 ∪ . . . ∪ Sd and connect v to v1, . . . , vd.

v

v1

v2

. . .

· · ·
· · ·

· · ·

�����
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Fig. 3. A star-like tree.

Then v1, . . . , vd have degree c1, . . . , cd respectively, and the resulting graph has
exactly d + (c1 − 1) + . . . + (cd − 1) = c1 + . . . + cd = n edges. The tree itself
is denoted by S(c1, . . . , cd), its Fibonacci number by f(c1, . . . , cd).

Proposition 1 Every star-like tree T is of the form S(c1, . . . , cd) for some
partition of n; this partition is unique if the tree has diameter 4. Other-
wise, there are exactly two different partitions, except in the case of the tree
S(n+1

2
, 1, . . . , 1) if n is odd.

Proof: First, let the diameter of T be equal to 4. Choose any diameter v0, v1, v2,
v3, v4. Then the distance from v2 to any other vertex w must be ≤ 2 (otherwise,
there would be a path of length ≥ 5 from v0 to w or from v4 to w). Therefore,
all components of T \ {v2} are stars, and their midpoints are connected to v2.
It follows that the tree has the desired form, where v2 is the unique midpoint
(from every other point, there are paths of length ≥ 3).

If the diameter is 3, then we see (analogously) that T must be a double-star,
i.e. the union of two stars whose centers are connected by an edge. Then there
are two possibilities for the midpoint yielding the two possible representations
S(k, 1, . . . , 1

︸ ︷︷ ︸

l−1

) and S(l, 1, . . . , 1
︸ ︷︷ ︸

k−1

), where k and l are the degrees of the two

center-vertices. These representations coincide if and only if k = l = n+1
2

.

Finally, the star with n edges (which has diameter 2) has the two representa-
tions S(1, . . . , 1) and S(n). Thus, the claim is proved. �

Definition 3 Let c1, . . . , cd−1 be integers with ci ≥ 0. Then the tree which is
made up from a path v0, v1, . . . , vd of length d by attaching ci new edges to
vi (1 ≤ i ≤ d − 1, see Figure 4) is called a (c1, . . . , cd−1)-star chain, denoted
by C(c1, . . . , cd−1). It has n = c1 + . . . + cd−1 + d edges. C(c1, . . . , cd−1) is also
known as a caterpillar tree (see [15]).
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Fig. 4. A star chain.

Definition 4 Let T (n) be the set of all trees with n edges. We define relations

� and
!� on T (n) by

T1 � T2 :⇐⇒ F (T1) > F (T2)

T1

!� T2 :⇐⇒ T1 � T2 ∧ (@ T ∈ T (n) : F (T1) > F (T ) > F (T2))

Remark: � is not a total order on T (n); e.g., the following two trees from
T (7) both have Fibonacci number 60:

r r r r r r r r r r r r rr r r

Fig. 5. Two trees with Fibonacci number 60.

Indeed, there are even arbitrarily large sets of trees with both equally many
edges and equal Fibonacci number. This is an immediate consequence of the
fact that |T (n)| ∼ βαnn−5/2 (where α = 2.955765 . . ., see [14,27]), which grows
faster than the maximal Fibonacci number 2n + 1 (by Lemma 3).

Lemma 2 (cf. [13,20]) Let G be an arbitrary graph.

• If G = G1 ∪ G2 . . . ∪ Gk is the union of disjoint graphs, we have

F (G) =
k∏

i=1

F (Gi).

• If v ∈ V (G), we have

F (G) = F (G \ {v}) + F (G \ ({v} ∪ N(v))),

where N(v) denotes the neighborhood of v.

In particular, let T be a tree and v ∈ V (T ), and let T1, . . . , Tk be the com-
ponents of T \ {v}. Furthermore, define vi := N(v) ∩ Ti. Combining the two
formulas, we obtain

F (T ) =
k∏

i=1

F (Ti) +
k∏

i=1

F (Ti \ {vi}).
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Fig. 6. Illustration of Lemma 2.

Proof: The first claim is obvious from the fact that an independent subset in G
is the union of independent subsets in the components Gi; this correspondence
is bijective. For the second claim, note that the first summand gives the num-
ber of independent subsets not containing v, whereas the second summand
gives the number of independent subsets containing v. �

The following result is due to Prodinger and Tichy [28], for completeness we
include a proof here. In [19] this result was rediscovered and extended to
arbitrary graphs.

Lemma 3 For a given number of edges n, the tree T which maximizes F (T )
is the star Sn with n rays; F (Sn) = 2n + 1.

Proof: by induction on n. For n = 0, there is nothing to prove. Now, assume
that the result holds for n, and let T be a tree with n+1 edges. Furthermore,
let v be a leaf of T , and let v1 be the unique neighbor of v. Then F (T ) =
F (T \ {v}) + F (T \ {v, v1}) by the preceding lemma.

By the induction hypothesis, we know that F (T \{v}) ≤ F (Sn) = 2n +1, with
equality if and only if T \{v1} ' Sn. The graph T \{v, v1} contains n vertices,
so F (T \ {v, v1}) ≤ 2n (the total number of possible vertex subsets), with
equality if and only if T \ {v, v1} is a graph without edges. This happens only
if T \ {v} ' Sn, where v1 is the center of the star. It follows immediately that
F (T ) is maximal for T ' Sn+1, and that F (Sn+1) = 2n +1+2n = 2n+1 +1. �

Lemma 4 (replacement lemma) Let T be a tree, e = (v, v1) ∈ E(T ) an
edge, and let T1 be the component of T \{e} which contains v1. Now we apply
the following transformation: replace all the edges of T1 by edges incident with
v; in other words, T1 is replaced by a star with center v. If the resulting tree
is denoted by T ′, the inequality F (T ′) ≥ F (T ) holds.

v v1r rr��
��

- ��PP��
@@
��
BB

T1

Fig. 7. Illustration of Lemma 4.
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Proof: We apply Lemma 2 to v: let T2, . . . , Tk be the components of T \ {v}
other than T1, and let m be the number of vertices of T1. It is obvious that
F (Ti \ {vi}) < F (Ti) (2 ≤ i ≤ k). Thus,

k∏

i=2

F (Ti) ≥
k∏

i=2

F (Ti \ {vi})

with equality if and only if k = 1 (in this case, we have two empty products
of value 1). By Lemma 3, we know that F (T1) ≤ 2m−1 +1 and F (T1 \ {v1}) ≤
2m−1, with equality if and only if T1 is a star with center v1. Now applying
Lemma 2 to v yields

F (T ) =
k∏

i=1

F (Ti) +
k∏

i=1

F (Ti \ {vi})

and

F (T ′) = 2m
k∏

i=2

F (Ti) +
k∏

i=2

F (Ti \ {vi})

Using the inequalities from above, we obtain

(2m − F (T1))
k∏

i=2

F (Ti) ≥ (F (T1 \ {v1}) − 1)
k∏

i=2

F (Ti \ {vi})

with equality if either m = 1 (in this case, both sides are 0) or Ti ' Sm is
a star with center v1 and k = 1 – note that in both cases, T ′ ' T . From
this inequality and the formulas for F (T ′) and F (T ), it follows easily that
F (T ′) ≥ F (T ), with equality in the aforementioned cases. �

Theorem 5 For a given number n of edges and given diameter D, the tree T
with maximal Fibonacci number F (T ) is the (n − D, 0, . . . , 0

︸ ︷︷ ︸

D−2

)-star chain, i.e.

the tree in Figure 8 with Fibonacci number 2n−D+1fD+1 + fD (where f0 = 0,
f1 = 1, fn+1 = fn + fn−1).

�
�@
@
r r r · · · · · · r

Fig. 8. Tree with maximal Fibonacci number, given the diameter.

Remark: Note that 2n−D+1fD+1+fD > 2n−DfD+2+fD+1 (which is equivalent
to 2n−DfD−1 > fD−1, an obvious inequality). This means that the maximal
Fibonacci number, given the number of edges n and the diameter D, is a
decreasing function in D.
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Proof: by induction on n. For n ≤ 2, the assertion is trivial. Now let n ≥ 3.
First, we prove that the tree T of maximal Fibonacci number must be a star
chain.

Let v0, v1, . . . , vD be a diameter. Then vertices v0 and vD must be leaves. By
Lemma 4, the Fibonacci number increases if we replace all components of
T \ {vi} which contain none of the other vj (0 ≤ j ≤ D) by single edges
incident with vi. We apply this transformation for all i (1 ≤ i ≤ D − 1). Note
that the diameter remains unchanged; the resulting tree is a star chain, i.e.
T ' C(c1, . . . , cD−1), where ci = deg vi − 2 (cf. Figure 4).

We set R1 := T \ {v0} and R2 := R1 \ ({v1}∪ (N(v1) \ {v2})). In other words,
R2 is the tree which results if we “cut off” v0, v1 and the vertices adjacent to
v1 (except v2). Then we have, by Lemma 2 applied to v0,

F (T ) = F (R1) + 2c1F (R2).

We consider two cases:

(1) c1 ≥ 1. Then R1 has diameter D, and thus (by the induction hypothesis),
F (R1) is maximal if and only if R1 ' C(n−1−D, 0, . . . , 0

︸ ︷︷ ︸

D−2

). Furthermore,

R2 contains the simple path P = {v2, . . . , vD}. Therefore,

F (R2) ≤ F (P ) · 2|R2\P | = F (P ) · 2c2+...+cD−1 = FD+1 · 2n−c1−D

with equality if and only if R2 = P . However, this means that

F (T ) ≤ F (C(n − 1 − D, 0, . . . , 0
︸ ︷︷ ︸

D−2

)) + 2n−DfD+1

with equality if and only if c2 = c3 = . . . = cD−1 = 0, i.e. T ' C(n −
D, 0, . . . , 0
︸ ︷︷ ︸

D−2

).

(2) c1 = 0. Then R1 has diameter D − 1, and R2 has diameter D − 2 or
D − 1. By the induction hypothesis, F (R1) is maximal if and only if
R1 ' C(n − D, 0, . . . , 0

︸ ︷︷ ︸

D−3

), i.e. either c2 = n − D, c3 = . . . = cD−1 = 0 or

cD−1 = n − D, c2 = . . . = cD−2 = 0.
Analogously, by the induction hypothesis, F (R2) is maximal if either

R2 ' C(n− 1−D, 0, . . . , 0
︸ ︷︷ ︸

D−3

) (diameter D− 1) or R2 ' C(n−D, 0, . . . , 0
︸ ︷︷ ︸

D−4

)

(diameter D− 2). But since we know that the function 2n−D+1fD+1 + fD

is decreasing in D, F (R2) is maximal if and only if R2 has diameter D−2,
and c3 = n − D, c2 = c4 = . . . = cD−1 = 0 or cD−1 = n − D, c2 = . . . =
cD−2 = 0. As in Case 1, it follows that F (T ) is maximal if and only if
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c2 = . . . = cD−2 = 0 and cD−1 = n − D, i.e. T ' C(n − D, 0, . . . , 0
︸ ︷︷ ︸

D−2

).

Finally, the induction step for the formula for F (T ) is easily done as follows
(with R1, R2 as in Case 1):

F (T ) = F (R1) + 2c1F (R2)

= F (C(n − 1 − D, 0, . . . , 0)) + 2n−DF (P )

= 2n−DfD+1 + fD + 2n−DfD+1

= 2n−D+1fD+1 + fD.

�

Corollary 6 The non-star-like tree of maximal Fibonacci number is the “Christ-
mas star” CSn ' C(n−5, 0, . . . , 0) with a diameter of 5 and F (CSn) = 2n−1+5
(Figure 2).

Now, we see that all trees with a Fibonacci number larger than 2n−1 + 5 are
star-like, so we only have to consider star-like trees in the following. We start
with an explicit formula for the star-like tree corresponding to a partition
(c1, . . . , cd).

Lemma 7

f(c1, . . . , cd) = F (S(c1, . . . , cd)) =
d∏

i=1

(2ci−1 + 1) + 2n−d.

Proof: This follows trivially from Lemma 2 using the fact that the star Sci−1

has Fibonacci number 2ci−1 + 1. �

Lemma 8 If a partition contains a, b with a ≥ b + 2, the corresponding Fi-
bonacci number (i.e. the Fibonacci number of the corresponding star-like tree)
decreases when a, b are replaced by a − 1, b + 1.

Proof: As the length of the partition remains unchanged, the term 2n−d in
Lemma 7 stays the same. Thus, it suffices to prove that (2a−1 +1)(2b−1 +1) >
(2a−2 + 1)(2b + 1):

(2a−1 + 1)(2b−1 + 1) > (2a−2 + 1)(2b + 1)

⇔ 2a−1 + 2b−1 > 2a−2 + 2b

⇔ 2a−2 > 2b−1,

which is correct by the assumption that a ≥ b + 2. �
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Corollary 9 If the partition length d is fixed, the corresponding Fibonacci
number is maximal for the partition (n − d + 1, 1, . . . , 1) and minimal for the
partition (k + 1, . . . , k + 1, k, . . . , k) with k = bn

d
c.

The second-largest Fibonacci number is obtained for the partition (n−d, 2, 1,
. . . , 1) (if 1 < d ≤ n − 2), the third-largest for (n − d − 1, 3, 1, . . . , 1) (if
1 < d ≤ n − 4) or (2, 2, 2, 1, . . . , 1) (if d = n − 3).

Proof: If a partition of fixed length d is different from (n−d+1, 1, . . . , 1), the
partition contains a ≥ b ≥ 2. If we replace them by a + 1, b− 1, the Fibonacci
number increases by Lemma 8. Analogously, if the partition is different from
(k + 1, . . . , k + 1, k, . . . , k), we can find parts a ≥ b + 2 and apply Lemma 8.
This proves the statements for maximum and minimum.

For d ≥ n − 1 or d = 1, the partition is uniquely determined by its length.
Thus there is no second-largest Fibonacci number in this case. Now, a partition
different from (n − d + 1, 1, . . . , 1) and (n − d, 2, 1, . . . , 1) must contain either
two parts a ≥ b ≥ 3 or three parts c ≥ a ≥ b ≥ 2. In both cases, we replace a, b
by a + 1, b− 1. Then we obtain a partition different from (n− d + 1, 1, . . . , 1),
and the Fibonacci number increases (by Lemma 8). This proves the second
part.

If d ≥ n−2 or d = 1, there are no further partitions. If d = n−3, there is only
one partition remaining, namely (2, 2, 2, 1, . . . , 1). Thus it is also the partition
giving the third-largest Fibonacci number. Eventually, if 1 < d ≤ n − 4,
and a partition is different from (n − d + 1, 1, . . . , 1), (n − d, 2, 1, . . . , 1), and
(n − d − 1, 3, 1, . . . , 1), it contains either two parts a ≥ b ≥ 4 or three parts
c ≥ a ≥ b ≥ 2 with c ≥ 3 or four parts c1 = c2 = a = b = 2 (as d ≤ n − 4, the
partition cannot be (2, 2, 2, 1, . . . , 1)). Again, we can replace a, b by a+1, b−1
to increase the Fibonacci number, and we obtain partitions different from
(n−d+1, 1, . . . , 1) and (n−d, 2, 1, . . . , 1) (either two parts ≥ 3 or three parts
≥ 2 remain). It follows that the third-largest Fibonacci number occurs for the
partition (n − d − 1, 3, 1, . . . , 1). �

Lemma 10 Let the number of edges be n ≥ 8. If a star-like tree is not of the
form S(n−d+1, 1, . . . , 1), S(n−d, 2, 1, . . . , 1), or S(n−k, k), it has Fibonacci
number < 2n−1.

Proof: By Corollary 9, it suffices to prove the claim for the trees S(n − d −
1, 3, 1, . . . , 1), (3 ≤ d ≤ n − 4) and S(2, 2, 2, 1, . . . , 1):

11



f(n − d − 1, 3, 1, . . . , 1)
Lemma 7

= (2n−d−2 + 1) · 5 · 2d−2 + 2n−d

=
5

16
· 2n + 5 · 2d−2 + 2n−d

≤ 5

16
· 2n + 10 +

1

8
· 2n

=
7

16
· 2n + 10 < 2n−1 (as n ≥ 8)

and

f(2, 2, 2, 1, . . . , 1)
Lemma 7

= 33 · 2n−6 + 8

=
27

64
· 2n + 8 < 2n−1 (as n ≥ 8).

The inequality 5 · 2d−2 + 2n−d ≤ 10 + 1
8
· 2n can be verified by the observation

that the function 2d−2 + 2n−d is convex in d and has thus its maximum at one
of the interval borders. Since 5 · 2n−6 + 16 ≤ 10 + 2n−3 for n ≥ 7, we have the
stated inequality. In the following, analogous arguments will be used several
times. �

Lemma 11 We have

f(n − d + 1, 1, . . . , 1) = 2n−1 + 2d−1 + 2n−d,

f(n − d, 2, 1, . . . , 1) =
3

8
· 2n +

3

4
· 2d + 2n−d,

f(n − k, k) = 2n−1 + 2k−1 + 2n−k−1 + 1.

Proof: All these formulas follow trivially from Lemma 7. �

3 Main results

Theorem 12 (Main Theorem) For n ≥ 9, we have

Sn = S(1, . . . , 1)
!� S(2, 1, . . . , 1)

!� S(3, 1, . . . , 1)
!� S(n − 2, 2)

!� S(4, 1, . . . , 1)
!� S(n − 3, 3)

!� S(2, 2, 1, . . . , 1)
!� S(5, 1, . . . , 1)

!� S(n − 4, 4)
!� S(6, 1, . . . , 1)

!� S(n − 5, 5)
!� . . .

!�






S(n
2
, 1, . . . , 1)

!� S(n+2
2

, n−2
2

)
!� S(n

2
, n

2
)

!� S(n − 3, 2, 1)
!� CSn n even

S(n−1
2

, 1, . . . , 1)
!� S(n+3

2
, n−3

2
)

!� S(n+1
2

, 1, . . . , 1)
!� S(n+1

2
, n−1

2
)

!� S(n − 3, 2, 1)
!� CSn n odd.
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Proof: By Theorem 5, all T � CSn must have diameter ≤ 4. Thus we know
from Lemma 10 that we only have to consider trees of the forms given there.
We already know their Fibonacci numbers from Lemma 11.

By the argument mentioned in the proof of Lemma 10,

f(n − d, 2, 1, . . . , 1) =
3

8
· 2n +

3

4
· 2d + 2n−d

≤ max
(

3

8
· 2n + 12 + 2n−4,

3

8
· 2n + 3 · 2n−5 + 8

)

=
3

8
· 2n + 3 · 2n−5 + 8 < 2n−1 (as n ≥ 9)

for all 4 ≤ d ≤ n − 3, so we need not care about all trees of the form S(n −
d, 2, 1, . . . , 1) with 4 ≤ d ≤ n − 3. It is only necessary to determine the order
of the remaining trees. We do this in several steps:

• f(n − d + 1, 1, . . . , 1) > f(d, n − d) (n − 2 ≥ d ≥ n/2) is equivalent to

2n−1 + 2d−1 + 2n−d > 2n−1 + 2d−1 + 2n−d−1 + 1 ⇔ 2n−d−1 > 1,

which is obviously true for d ≤ n − 2.
• f(n− d, d) > f(n− d + 2, 1, . . . , 1) (n− 2 ≥ d ≥ (n + 3)/2) is equivalent to

2n−1 + 2d−1 + 2n−d−1 + 1 > 2n−1 + 2d−2 + 2n−d+1 ⇔ 2d−2 + 1 > 3 · 2n−d−1,

which also holds within the given range of d.
• f(1, . . . , 1) > f(2, 1, . . . , 1) > f(3, 1, . . . , 1) is equivalent to

2n + 1 > 3 · 2n−2 + 2 > 5 · 2n−3 + 4,

which is also obvious.
• f(n−3, 3) > f(2, 2, 1, . . . , 1) > f(5, 1, . . . , 1) is equivalent to another simple

inequality:
9

16
· 2n + 5 >

9

16
· 2n + 4 >

17

32
· 2n + 16,

which holds true for n ≥ 9.
• f(n+2

2
, n−2

2
) > f(n

2
, n

2
) (n even) follows immediately from Lemma 8.

• f(n
2
, n

2
) > f(n − 3, 2, 1) > F (CSn) (n even) is equivalent to the obvious

inequality

2n−1 + 2n/2 + 1 > 2n−1 + 6 > 2n−1 + 5.

• Finally, f(n+1
2

, n−1
2

) > f(n − 3, 2, 1) > F (CSn) (n odd) is equivalent to

2n−1 + 3 · 2(n−3)/2 + 1 > 2n−1 + 6 > 2n−1 + 5,

which is obvious, too.

13



All these put together yield the theorem. Note that the sequence of trees of
the form S(k, 1, . . . , 1) ends with (bn+1

2
c, 1, . . . , 1), as the trees S(k, 1, . . . , 1)

and S(n − k + 1, 1, . . . , 1) are isomorphic. �

Theorem 13 The star-like tree with n edges and minimal Fibonacci number

is S(3, . . . , 3), S(3, . . . , 3, 2) or S(3, . . . , 3, 2, 2) (depending on the residue class

of n modulo 3), if n ≥ 25.

Proof: By Corollary 9, the partition of minimal Fibonacci number has the
form (k + 1, . . . , k + 1, k, . . . , k). First we prove the following statement:

If an even element 2l in the partition is replaced by l times 2 (l ≥ 2), the
Fibonacci number decreases; similarly, if an odd element 2l+1 in the partition
is replaced by l−1 times 2 and one 3 (l ≥ 2), the Fibonacci number decreases.

This is proved as follows: as the length of the permutation grows, the term
2n−d in the formula of Lemma 7 decreases. Therefore, it suffices to prove that
the remaining term doesn’t increase, i.e. 22l−1 + 1 ≥ 3l and 22l + 1 ≥ 5 · 3l−1.
Both follow easily by induction on l.

Thus we know that the minimal Fibonacci number occurs for a partition which
only contains 1’s, 2’s and 3’s. More specifically, it must be a partition of the
form (3, . . . , 3, 2, . . . , 2) or (2, . . . , 2, 1, . . . , 1). By Lemma 7, we have

f(3, . . . , 3
︸ ︷︷ ︸

k

, 2, . . . , 2
︸ ︷︷ ︸

(n−3k)/2

) = 5k3(n−3k)/2+2(n+k)/2 and f(2, . . . , 2
︸ ︷︷ ︸

k

, 1, . . . , 1
︸ ︷︷ ︸

n−2k

) = 3k2n−2k+2k.

Both are decreasing in k, for k ≤ n/3 and k ≤ n/2 respectively:

5k−23(n−3k+6)/2 + 2(n+k−2)/2 ≥ 5k3(n−3k)/2 + 2(n+k)/2

⇔ 3n/2
(

(25/27)(k−2)/2 − (25/27)k/2
)

≥ 2(n+k−2)/2

⇔ (2/25) · 3n/2 · (25/27)k/2 ≥ 2(n+k−2)/2

⇔ (4/25) · (3/2)n/2 ≥ (54/25)k/2,

which is true for k ≤ n/3 and n ≥ 25:

(4/25) · (3/2)n/2 = (4/25) · (54/25)n/6 · (5/4)n/3 ≥ (4/25) · (54/25)n/6 · (5/4)25/3

> (54/25)n/6 ≥ (54/25)k/2.

14



Note that we only need to consider k and k − 2, since k must have the same
parity as n. On the other hand,

3k−12n−2k+2 + 2k−1 ≥ 3k2n−2k + 2k

⇔ 2n
(

(3/4)k−1 − (3/4)k
)

≥ 2k−1

⇔ (2/3) · 2n ≥ (8/3)k

⇔ (2/3) · (3/2)n/2 · (8/3)n/2 ≥ (8/3)k,

which is obviously true for all k ≤ n/2 and n ≥ 2.

Thus the minimum is attained for the maximal value of k in both cases, i.e.
k = n−r

3
(where r = 0, 4, 2 for n ≡ 0, 1, 2 mod 3) and k = bn/2c respectively.

To complete the proof, we only need the following observations:

f(2, . . . , 2
︸ ︷︷ ︸

(n−1)/2

, 1) > f(2, . . . , 2
︸ ︷︷ ︸

(n−3)/2

, 3) (n odd),

f(2, . . . , 2
︸ ︷︷ ︸

n/2

) > f(2, . . . , 2
︸ ︷︷ ︸

(n−6)/2

, 3, 3) (n even).

The first is equivalent to

2 · 3(n−1)/2 + 2(n−1)/2 > 5 · 3(n−3)/2 + 2(n+1)/2

⇔ 3(n−3)/2 > 2(n−1)/2,

which holds for n ≥ 7. The second is equivalent to

3n/2 + 2n/2 > 52 · 3(n−6)/2 + 2(n+2)/2

⇔ 3(n−6)/2 > 2(n−2)/2,

which holds for n ≥ 13. This completes the proof. �

4 Asymptotic results

Theorem 14 There are p(n)−bn
2
c nonisomorphic star-like trees with n edges,

where p(n) ∼ exp(π
√

2n/3)

4
√

3n
is the number of partitions of n.

Proof: By Proposition 1, each partition corresponds to exactly one star-like
tree and vice versa. The only exceptions are partitions of the form (k, 1, . . . , 1).
Two different partitions represent the same tree if and only if they are of the
form (k, 1, . . . , 1) and (l, 1, . . . , 1) (k, l ≥ 1, k 6= l) with k + l = n + 1. There
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are exactly bn
2
c pairs (k, l) with 1 ≤ k < l and k + l = n + 1. This already

proves the claim. �

Theorem 15 The average Fibonacci number of a star-like tree with n edges

is asymptotically (n → ∞) A · 2n · exp(B
√

n) · n3/4, where

A =

(

π4

27
− 2π2

9
(log 2)2

)−1/4 ∞∏

j=1

(1 − 2−j)−1 = 2.739149898 . . .

and

B =
√

π2/3 − 2(log 2)2 −
√

2π2/3 = −1.039005919 . . . .

Proof: The proof is rather lengthy and technical, so we only give the main
ideas here. All details can be found in [31]. Note first that there is an almost
1-1-correspondence between partitions and star-like trees. Therefore, we only
have to determine

s(n) :=
∑

c

(
d∏

i=1

(2ci−1 + 1) + 2n−d

)

,

where the sum ranges over all partitions c = (c1, . . . , cd) of n. Now, it is easy
to see that the generating function for this sum is given by

∞∏

j=1

(1 − (2j−1 + 1)xj)−1 +
∞∏

j=1

(1 − 2j−1xj)−1.

If we replace x by z/2, we obtain a generating function for 2−ns(n):

∞∏

j=1

(

1 −
(

1

2
+ 2−j

)

zj
)−1

+
∞∏

j=1

(

1 − 1

2
zj
)−1

.

It turns out that only the first summand gives an asymptotically relevant
contribution. We write G(z) :=

∏∞
j=1(1− (1

2
+2−j)zj)−1 und F (z) :=

∏∞
j=1(1−

1
2
zj)−1. Both functions are holomorphic on every compact disk of radius < 1

around 0. Applying Cauchy’s residue theorem, we obtain

2−ns(n) =
1

2πi

(∫

C1

z−n−1G(z) dz +
∫

C2

z−n−1F (z) dz
)

for appropriate curves C1, C2 around 0. Now, both integrals are estimated by
means of the saddle point method. We set

z−nG(z) = exp g(z),

i.e. g(z) = −∑∞
j=1 log(1−(1/2+2−j)zj)−n log z, and use the Euler-Maclaurin

summation formula to obtain

g′(e−β) = eβ

(

b2

β2
+

1

β
+ O(1) − n

)

,
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where b2 = π2

12
− (log 2)2

2
, so β = b√

n
+ 1

2n
+O(n−3/2) for the saddle point z = e−β .

Using the Euler-Maclaurin formula again yields

g(e−β) = 2b
√

n + log

√
n

2
√

2ab
+ O(n−1/2),

g′′(e−β) =
2

b
n3/2 + O(n),

g′′′(e−β) = O(n2).

Here, a =
∏∞

j=1(1−2−j). Now, a routine application of the saddle point method
(we integrate along the circle C1 = {z = e−β+it : t ∈ [0, 2π)}) gives us

1

2πi

∫

C1

z−n−1G(z) dz ∼ 1

4a
√

2πb
e2b

√
nn−1/4

and analogously

1

2πi

∫

C2

z−n−1F (z) dz ∼
√

b

8π
e2b

√
nn−3/4.

Altogether, we have

s(n) ∼ 2n 1

4a
√

2πb
e2b

√
nn−1/4,

which proves the theorem together with the Hardy-Ramanujan-Rademacher
formula (Theorem 0). �

5 Open Problems and Acknowledgment

5.1 Problems

The following open questions seem to be very natural:

• Can one find a result analogous to Theorem 5 for the minimum? Theorem 13
provides such a result for diameter 4, and for diameter 2 and 3, we can see
the minimum from Theorem 12.

• Can one find the maximal Fibonacci number under other restrictions such
as bounding the degree of the edges, bounding the number of leaves, etc.?

• Can one compute the exact asymptotics of the average Fibonacci number
of trees?
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