A NOTE ON STIRLING SERIES

MARKUS KUBA AND HELMUT PRODINGER

ABSTRACT. We study sums S = S(d,n, k) = > .5, % withd e N={1,2,...} and
> )51

n,k € Ng ={0,1,2,...} and relate them with (finite) multiple zeta functions. Further,
we relate sums S to Nielsen’s polylogarithm.

1. INTRODUCTION

The unsigned Stirling numbers of the first kind, also called Stirling cycle numbers, are
defined by the recurrence relation

n n—1 n—1 n
= (n— > ' — >
L{] (n 1){ f ] + L{;_ 1], n>1, with [O] Ono, n >0,

where 9; ; denotes the Kronecker delta function. Throughout this work we use Knuth’s

notation [Z] It is well known that Stirling numbers of the first kind are closely related

to harmonic numbers, i.e. [5] = (n — 1)!H,_q, [§] = (n — DI(HZ, - H7s2))/2, where for
s,n € N the values H®) = 37 1/¢* denote n-th harmonic numbers of order s, H, = H.".
Furthermore, it is known (i.e. see Adamchik [1]) that Stirling numbers of the first kind are

expressible in terms of (finite) multiple zeta functions defined by

1
CN(&17-~-,al): Z el _az  _ag’

N>ni>ng>-->n;>1 L2 ¢
¢( ) ) !
ar,...,Qqp) = _
Y nyng?...ny"’
ni>ng>-->ng>1

by the following formula

m = (n =D (1., D) =(n =D G ({1 ).

k-1
Note that for n,s € Ny we have (,(s) = HL?. We are interested in evaluations of sums

52221% withd e N={1,2,...} and n,k € Ny ={0,1,2,...}. We assume that
n and k are choosen in way such that n+k > 1 in order to ensure that the sum converges.
Special instances of this family of sums have been studied by Adamchik [1], and also by

Choi and Srivastava [5].
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2. EVALUATION OF SUM S

We obtain the following result.
Theorem 1. The sum S = S(d,n, k) withd e N={1,2,...} andn,k € Ny ={0,1,2,...}
can be evaluated in terms of harmonic numbers and (finite) multiple zeta functions,

k+1 k+1—-m r mr
(H)

S = Z k-‘rl mC‘ {1}d—1) Z H TmnT—n’LT'

Zf+11 ™ imi=k+1-m T=1

k
_1)k2 Z Cullr, by —ly,y oo by — Lo, d+ Kk — 1p—q),

h=1 1<l <lo<--<Llp_1<k

subject to by := 0. We have the short equivalent expression
k41

S= (-G {1 hhor.d+ 1)+ (=) (m, {1} -1) G ({1 k1 —m)-

Remark 1. The second expression for the sum S is given according to a variant of finite
multiple zeta functions, (i (a1, ..., ax), which recently attracted some interest,[2, 11, 8, 6]
where the summation indices satisfy N > n; > ng > -+ > ng > 1 in contrast to N > nq >
ng > -+ >ng > 1, as in the usual definition (1),

. 1
Cvla, ... a) = > T

N>ny>ng>->n>1 1072 k

The form stated above is due to the conversion formula below applied to ¢f({1}x_1,d+ 1),

41 Lo k
QN aiy...,a Z Z (N(Zail, Z CLZ‘Q,..., Z aih>.

h=1 1<l <la<--<lp_1<k 11=1 io=01+1 ip=0Cp_1+1
o=0
Note that the first term & = 1 should be interpreted as CN(ZZ:ZOH a;, ), subject to £y = 0.
The notation (y(ay,...,ax) is chosen in analogy with Aoki and Ohno [2] where infinite
counterparts of (x(ay,...,ax) have been treated; see also Ohno [11].

Remark 2. The sum ((m, {1}4-1) can be completely transformed into single zeta values.
By results of Borwein, Bradley and Broadhoarst [3]

¢(2,{1}a) = C(d +2)

d—|-2

C(3,{1}4) = Cd+3) =3 ¢+ 1)¢(d+2—10).

l\DI»—

Furthermore, in the general case of ((m + 2,{1}4) = ((d + 2,{1},,) one obtains products
of up to min{m + 1,d + 1} zeta values, according to the generating function, see [3],

S clmt 2 1)y = 1o E S )

m,n>0 k>2
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Below we state three specific evaluations of the sum S for special choices of d,n, k.
Corollary 1. For k =0 and arbitrary n,d € N we get

S0y =3 1

j21

(")t

For k=1 and arbitrary n,d € N we get

s<d,n,1>:§;j(nﬁl)] — (2 {ht) = Gld+ ) =+ 1) = B, (2)

Forn =0 and arbitrary d,k € N we get
S(d,0,k) =C(k+1,{1}4-1).
In order to prove the results above we proceed as follows: Since

I S(r1 (1)t
("jj)_(nﬂ)”_z (H) TR

(=1

we obtain .
n J

n—1 [ ]
=3 st = Yon(f )0 S
n-‘r o Nkl

) o -1 = 3G+ 1)
We use partial fraction decomp081t10n and obtain

k
1 —1)k—m —1)k+1 1 1
ST = 2 : k)lf i i (‘-—.—)
RGO ey gt ¢ jooi+t
Consequently, we get by using the partial fraction decomposition above and the represen-
tation of Stirling numbers by finite multiple zeta functions

g Z (g_1) ey gk+2m Zle{l}dl

m=2 7>1

+Z (Z:f) G S V(G- ) =S+

j>1

By definition of the multiple zeta function we get

k41 (_1)k+17m

5= 3n(0 7)) S

(=1 m=2
k+1 n /-1
m n—1)\ (-1
=S con e (7 )
(=1

We rewrite the inner sum as

Sa(l ) o ()

/=1 /=1
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This sum can be evaluated by using the following result of Flajolet and Sedgewick [7],

()N y [

=1 S iemy=m =1

we recall that HS” = >y, 1/¢° denotes the n-th harmonic number of order s; in other

words we have H.Y = = (,u($), according to our previous definition of finite multiple zeta
functions (1). The multiple zeta function {(m, {1},) is evaluated using a result of Borwein,
Bradley and Broadhoarst [3], see Remark 2. Consequently, we can write sum S; as a finite
sum involving higher order harmonic numbers and products of zeta functions and obtain
the first part of our result. For the simpliﬁcation of the inner sum

5= 0() )0 S S G ahe) - )

=1 j>1

we use the notation Tp,p = 3.5 (- 1({1}m)(— — m) Subsequently, we interchange

summation, compare with Panholzer and Prodinger [10]. First we start with the simple
case m = 1 and calculate T 4, since it is most instructive.

11 1 1
N (R N S
b ; TG e ; Nj+1 j+1+¢4

Since by definition H; = Zfl:l 1/h we obtain after summation change (partial summation)

16—2 Z(j+1 ]—i—l—i—f) Z_: Z]"‘h

h>1"" j>h
By partial fraction decomposition we get
‘1 11 ‘“H; H!+H?
L= A () -y
=1/ =1 = 2
J= 2 J=

Now we turn to the general case T}, ,. Shifting the index as before, and changing the order
of summation leads to

o e ({Tm) 1 1
Tt =2 h ;(j+1_j+1+€>

h>1

Consequently,

-y! S Gl (- 575) = Z ~T-1

]1 h>1

Hence, the value T}, is a variant of the finite multiple zeta function (,({1},,+1), where the
summation indices satisfy N >mny >ng > -+ > n,, > nyuyp > 1instead of N > ny > ny >
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e > Ny > Ny > 1, see Remark 1, such that T, = ¢ ({1}m41). We further obtain

=G0 =Y (1) G

h=1

according to the well known formula (Z) =3 (f;:ll) Consequently, the sum S, simplifies
to

e () S () - S () ()

(=1 1

or equivalently

— (n\ (=),
5= -3 () St
=1
In order to obtain the final form of S5 for £ € N we combine our previous considerations
as follows:

n h1 hy
1 1 hy; -
S, = (—1)k _ — ... ( )—1hk+11* 1t4).

2=y hlzzlhl };hZ hk+21=1 et - Gher ({12)

We use the fact that ), (7)(})(=1)""" = 65,,(—=1)""! and the sum S, simplifies to

Sy = (=1 Cr({1hxor, d + 1)
In the case k = 0 we use

S S

h=1 {=h

3. RELATION TO NIELSEN’S POLYLOGARITHM
Nielsen’s polylogarithm Ly 4(z) is defined by
-1 k—1+d 11 k—ltl dl_ ¢
Lkd(z):( ) / og" (t)log"(1 —zt)
’ (k —1)la! J, t
By definition of the generating function of the Stirling cycle numbers
Z nlz" (—1)*log®(1 — 2)
Eln k! ’
n>k

g
it is evident that Ly 4(2) = 3,5, [Jd,l—; Hence, we obtain the following result.

Proposition 1. The series S(2) = Sanr(2) = 3251 % can be expressed by Nielsen’s

J

polylogarithm Ly 4(z) in the following way.

St~ (-

RGO
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Note that

Sz ZE ( ) - Zl/ / log"~ log (L—ut)
_Zg ( )le /Ozuﬂ-lLk,d(u)du.

Interchanging summation and integration gives the desired result.

3.1. Generalized r-Stirling numbers of the first kind. In a recent work Mez6 [9]
considered series involving so-called r-Stirling numbers of the first kind, see Broder [4].
For any positive integer » € N the quantity [TZL denotes the number of permutations of
the set {1,...,n} having m cycles such that the first r element are in distinct cycles. These
numbers obey the recurrence relation

n n—1 n—1 n n
[/Jr =(n— ){ i L—l— {k JT, n>r, {k]r Okr, M=r, {k]r 0, n<r

For r = 0 and r = 1 these numbers coincide with the ordinary Stirling numbers of the first

kind. We will consider the series
'+E+T} Zj
T

r T [J T
S0 (2) = Sy ulz) =D =2

j>1 ‘7 (n+])]'

which generalizes the series considered by Mez6 [9] (case n = 0) and our previously consid-
ered series S (case ¢ = r = (). Subsequently, we obtain representations of S C([,)lko(z) and

also of Sggu(z) We introduce the quantity LSL(z), which generalizes Nielsen’s polylog-

e (~1)F 1 log (1) log?(1 — 2t)
LO(z) = / 8 5 dt.
kd (k—1)a! (1 — 2t)rt
[, (r)

Proposition 2. The series S((i?;,,k,o(z) =D is1 jk(n+§)j' can be expressed by Ly ;(z) in the
> it

following way.

r n ? u\n1 r
Siual =2 [ (1=2)" L

z z

The series Sy, . ,(2) can be expression as a linear combination of the sums Shn " 0( ), with

0<h<d.
First we note that the r-Stirling numbers of the first kind have the generating function

n+r] 2" (—1)Flog(1 - z)
Z; {mr]ﬁ T k(=2

We observe that ,
J+T} Zj

' |: T I8
Lij(z) = = W = S omo(2).

j>1 J
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Consequently, we get
[jJFT} 2J z n(l _ g)n
S((ZTT)I]{? (2) = e d+nr ~ = / — Lfle(u)du.
,n,k,0 ;jk( ;FJ)]! 0 (Z—u) )
Next we turn to the general case ¢ € N. Since

T [n+r] 2" (—1)%log’(1— z2)

d+r| nl — d(l-z)r

n>k

":{f{r]r by differentiating

(-times with respect to z and a subsequent shift of the index,

if(—l)dlogd(l—z)_ Z n+r] 2t Z n+l+r) 2"
0zt d(1—-z2)r d+r], (n—0! d+r |.n!

n>d+¢ n>max{d—¢,0}

(=1)log?(1-2)

we obtain the exponential generating function of [ A=)

By Faa di Bruno’s formula we get

O (~1)log"(1—z2) _ zf: d2(—1)" log™"(

92t d\(1—2) (1—z)+¢

¢
1-2) > B0 1,21, (i — R,
h=0 i=h
where B; (21,22, ...,%;—p11) denote the Bell polynomials. Consequently, we can express
the sum ngu(z) as a linear combination of the sums S}(:r)hm(z), with 0 < h < d, which
proves the stated result.

Remark 3. Note that the sums Sg%,k,e(l) =2 i1 W can in principle also be treated
> )1

[j+z+r] i
T

using our previous approach; however, the expression become much more involved, there-
fore we refrain from going into this matter. Furthermore, one can evaluate sums of the

J
form i>1 %, with g € N; however, the expressions get more and more involved.
J

HISTORICAL REMARK

The author H.P. has found the formula (2) empirically in 2003. He contacted several
specialists about it and got feedback from Christian Krattenthaler who provided a hyper-
geometric proof for it. Eventually it turned out that it was known already [5]. We are
happy that in 2009 we could put new life into this project.
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