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Abstract. Words where each new letter (natural number) can never be too large, com-
pared to the ones that were seen already, are enumerated. The letters follow the geometric
distribution. Also, the maximal letter in such words is studied. The asymptotic answers
involve small periodic oscillations. The methods include a chain of techniques: exponential
generating function, Poisson generating function, Mellin transform, depoissonization.

1. Introduction

When Knuth started his fundamental series of books The Art of Computer Program-
ming [8], de Bruijn was (one of) his asymptotic advisor(s). In particular, he suggested how
to evaluate sums like ∑

k≥1

(
1− e−n/2k

)
and

∑
k≥1

d(k)e−k
2/n,

where d(k) is the number of divisors of k. Although the word was not mentioned in the
first editions, in essence is was the Mellin transform that found its way into [9]. Around
the same time, the paper [2] appeared, which has 158 citations by google scholar. This
paper has a third coauthor, S. O. Rice, who also suggested asymptotic methods to Knuth;
there is an innocent exercise in [9], which lead later to developments called Rice’s method,
see [4].

We briefly review the Mellin transform method in asymptotic enumeration, compare
with [3, 5].

M [f(x); s] = f ∗(s) =

∫ ∞
0

f(x)xs−1dx.

There is the harmonic sum property

M
[∑
k≥1

akf(bkx); s
]

=
∑
k≥1

akb
−s
k ·M [f(x); s]. (1)
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This is particularly useful if the series has a closed form evaluation (often in terms of the
zeta function etc.).

Typically the Mellin transform exists in a vertical strip of the complex plane. There is
an inversion formula

f(x) =
1

2πi

∫ c+i∞

c−i∞
f ∗(s)x−sds,

where c must be in the vertical strip. Shifting the line of integration to the left/right and
collecting residues provides the asymptotic expansion. The choice of left/right depends on
whether one needs the expansion for x→∞ or x→ 0; see the converse mapping theorem
in [3] for a precise statement of this fact.

The most prominent example is f(x) = e−x, so that f ∗(s) = Γ(s), whence the term
Gamma function method was originally coined. During the last 40 years, de Bruijn’s
suggestion led to numerous further developments and applications.

In the technical part of this paper, we will indeed use the Mellin transform to deal with
a combinatorial (discrete probability) problem. As often in combinatorics, the problem
is not difficult to describe, although the solution requires some technical machinery. We
consider words w1w2 . . . wn where the letters are positive integers, and integer k appears
with (geometric) probability pqk−1, and p+ q = 1. The letters are independent from each
other. The restricted growth property is satisfied when

wk ≤ 1 + max{w1, . . . , wk−1} for all k and w0 = 0.

The words that satisfy the restricted growth property are related to set partitions and
approximate counting [10, 12]. The asymptotic enumeration of restricted words of length
n and the asymptotic study of max{w1, . . . , wn} was done in [11, 12] using the above
mentioned Rice method.

Now it is a natural extension to introduce a parameter:

wk ≤ d+ max{w1, . . . , wk−1} for all k and w0 = 0. (2)

For d ≥ 2, the asymptotic problems are of a more delicate nature, and that is what we
will do here. Rice’s method is based on explicit enumerations represented as alternat-
ing sums. We use here a combination of techniques that is more flexible: poissoniza-
tion/depoissonization and Mellin transform. Poissonization is the process of replacing the
fixed n by a random variable which is Poisson distributed with parameter z; depoissoniza-
tion is the reversed process that allows to go back from z to n. Typically, if f(z) is an

exponential generating function of a sequence an, then, with f̃(z) := e−zf(z), an ∼ f̃(n),
provided certain conditions are satisfied. The asymptotic study of the behaviour of the
poissonized version when z →∞ is achieved using the Mellin transform. This is the rough
plan; the details are in the following sections.

Notation. We collect here some notation which we are going to use throughout this work.
First,

Q := 1/q, L := logQ, χk := 2kπi/L, k ∈ Z.
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Moreover, if f(z) is a meromorphic function with singularity at z = ρ and singularity
expansion E(z), then we will write f(z) � E(z).

2. Asymptotic enumeration of words satisfying the restricted growth
property

Let pn be the probability that a random word w1 . . . wn satisfies the restricted growth
property (2).

We first condition on whether w1 is l with 1 ≤ l ≤ d. Note that the probability for this
is pql−1 and the probability that any other letter is ≤ l is

pq + pq2 + · · ·+ pql−1 = p
1− ql

1− q
= 1− ql.

Hence, by further conditioning on the number of letters ≤ l in w2 . . . wn+1, we obtain

pn+1 =
d∑
l=1

pql−1
n∑
j=0

(
n

j

)
(1− ql)n−jqljpj (n ≥ 0)

with initial condition p0 = 1.
The binomial convolution on the right-hand side of the recurrence above suggests the

use of exponential generating functions. Therefore, set

f(z) :=
∑
n≥0

pn
zn

n!
.

Then

f ′(z) =
d∑
l=1

pql−1e(1−q
l)zf(qlz)

Next, consider the Poisson generating function

f̃(z) := e−z
∑
n≥0

pn
zn

n!
.

Then, the above differential-functional equation becomes

f̃(z) + f̃ ′(z) =
d∑
l=1

pql−1f̃(qlz).

The goal is now to find the behaviour of f̃(z) as z → ∞, since pn ∼ f̃(n) by general
principles. This goal will be achieved using the Mellin transform. Recall that the Mellin
transform of a derivative is given by [3]

M [f̃(z);ω] = −(ω − 1)M [f̃(z);ω − 1].

Using this and (1) from the introduction yields

M [f̃(z);ω]− (ω − 1)M [f̃(z);ω − 1] =
d∑
l=1

pql−1−lω ·M [f̃(z);ω].
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This functional equation can be simplified by using the Gamma function as normalization
factor. Therefore, define

M̄ [f̃(z);ω] =
M [f̃(z);ω]

Γ(ω)
.

Then

M̄ [f̃(z);ω] =
M̄ [f̃(z);ω − 1]

P (q−ω)
,

where P (z) = 1− p
∑d

l=1 q
l−1zl.

Next, observe that the above functional equation has the general solution

F̄ (ω) := M̄ [f̃(z);ω] =
c

P (q−ω)Ω(q−ω)
, (3)

where Ω(s) =
∏

j≥1 P (sqj). Note that for d = 1, we have

Ω(s) =
∏
j≥1

(1− pqjs) = Q(ps) = (pqs; q)∞.

The notation Q(s) is often used in Computer Science contexts [6], whereas (pqs; q)∞ is
used in q-hypergeometric functions [1].

Next, we need to find c in (3). Therefore, observe that from f̃(0) = 1 and the direct
mapping theorem from [3], we have, as z → 0,

M [f̃(z);ω] � 1

ω
.

Consequently,

lim
ω→0

M̄ [f̃(z);ω] = lim
ω→0

M [f̃(z);ω]

Γ(ω)
= lim

ω→0

1/ω + · · ·
1/ω + · · ·

= 1.

Hence, by taking the limit as ω → 0 in (3)

c = P (1)Ω(1) = qdΩ(1).

Summarizing,

M [f̃(z);ω] =
qdΩ(1)Γ(ω)

P (q−ω)Ω(q−ω)
. (4)

Now that this function is known, we continue our program and (applying the inversion
formula) collect residues. In order to identify them, we need the following technical lemma.

Lemma 1. Let ρ denote the unique positive root of P (z). Then, ρ is simple, ρ > 1 and
the only root with |z| ≤ ρ.

Proof. Obviously, there exists a unique positive root ρ which is simple. Moreover, since

P (1) = 1− p
d∑
l=1

ql−1 = qd > 0,
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we have that ρ > 1. Next, observe that for |z| ≤ ρ∣∣∣∣p d∑
l=1

ql−1zl
∣∣∣∣ ≤ p

d∑
l=1

ql−1|z|l ≤ p
d∑
l=1

ql−1ρl = 1.

If |z| < ρ, then the last inequality is strict; if |z| = ρ, then in order that z is a zero of
P (z), we must have equality in the triangle inequality which is only possible if z is on the
positive real line.

From this lemma, we know that (4) has poles at logQ ρ+ χk with singularity expansion

M [f̃(z);ω] �
qdΩ(1)Γ(logQ ρ+ χk)

LρP ′(ρ)Ω(ρ)(ω − logQ ρ− χk)
.

Inverse Mellin transform then yields, as z →∞,

f̃(z) ∼ − qdΩ(1)

LρP ′(ρ)Ω(ρ)
z− logQ ρ

∑
k

Γ(logQ ρ+ χk)z
−χk .

The last step is depoissonization. Here, we use the notation of JS-admissibility defined
in Definition 1 of Section 2.3 in [6]. (The letters J and S are used to honour the authors
of the early effort [7].) The following lemma is sufficient for our purpose.

Lemma 2. Let f̃(z) and g̃(z) be entire functions with

f̃(z) + f̃ ′(z) =
d∑
l=1

pql−1f̃(qlz) + g̃(z).

Then
f̃(z) is JS-admissible ⇐⇒ g̃(z) is JS-admissible.

Proof. Similar as Proposition 2.4 in [6] (only minor modifications are necessary).

From this result, we obtain that f̃(z) is JS-admissible (since g̃(z) = 0 which is clearly
JS-admissible). Consequently, by Proposition 2.2 in [6],

pn ∼ −
qdΩ(1)

LρP ′(ρ)Ω(ρ)
n− logQ ρ

∑
k

Γ(logQ ρ+ χk)n
−χk .

We summarize this result in the following theorem.

Theorem 1. The probability pn that a random word of length n satisfies the restricted
growth property is asymptotically given by

pn ∼ −
qdΩ(1)

LρP ′(ρ)Ω(ρ)
Γ(logQ ρ)n− logQ ρ + n− logQ ρΨ(logQ n),

where Ψ(z) is a 1-periodic function with average value equal to zero and Fourier series

Ψ(z) = − qdΩ(1)

LρP ′(ρ)Ω(ρ)

∑
k 6=0

Γ(logQ ρ+ χk)e
−2kπi.
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Remark 1. As often in the analysis of algorithms, we have small periodic oscillations (small-
ness comes from the exponential decay of the Gamma function along vertical lines).

For d = 1, we have ρ = 1/p, and, ignoring the oscillating part, we have

pn ∼
qQ(p)

LQ(1)
Γ(− logQ p)n

logQ p.

This matches a formula given earlier in [11, 12].

3. The maximal letter in restricted words

The random variable Xn as indicated in the title of this section is reminiscent of the
height of planar (=planted plane) trees, as studied by de Bruijn, Knuth, and Rice [2].

Our goal here is to find the expected value of Xn which is given by

E(Xn) =

∑
k kpn,k
pn

, (5)

where pn,k is the probability that a random word w1 . . . wn satisfying (2) has largest letter
equal to k.

We will first derive a recurrence for pn,k. Therefore, we use the same argument as in the
previous section. This yields

pn+1,k =
d∑
l=1

pql−1
n∑
j=0

(
n

j

)
(1− ql)n−jqljpj,k−l (n ≥ 0; k ≥ 1)

with initial conditions pn,0 = [[n = 0]], p0,k = [[k = 0]] and pj,k = 0 for k < 0. Now, again
consider the Poisson generating function

H̃(z, u) := e−z
∑
n,k≥0

pn,ku
k z

n

n!
.

Then

H̃(z, u) +
∂

∂z
H̃(z, u) =

d∑
l=1

pql−1ulH̃(qlz, u). (6)

Next, in order to compute the expectation of Xn, set

h̃(z) =
∂

∂u
H̃(z, u)

∣∣∣
u=1

.

Note that this is the Poisson generating function of the numerator of (5). Differentiating
(6) with respect to u and setting u = 1 gives

h̃(z) + h̃′(z) =
d∑
l=1

pql−1h̃(qlz) + g̃(z)
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with

g̃(z) =
d∑
l=1

lpql−1f̃(qlz).

We again apply Mellin transform to this differential-functional equation. This yields

M [h̃(z);ω]− (ω − 1)M [h̃(z);ω − 1] =
(
1− P (q−ω)

)
M [h̃(z);ω] + M [g̃(z);ω].

Next, set

M̄ [h̃(z);ω] =
M [h̃(z);ω]

Γ(ω)

and
M [g̃(z);ω]

Γ(ω)
= −q−ωP ′(q−ω)F̄ (ω).

Then

M̄ [h̃(z);ω] =
M̄ [h̃(z);ω − 1]

P (q−ω)
− q−ωP ′(q−ω)F̄ (ω)

P (q−ω)
.

The solution of this recurrence is given by

M̄ [h̃(z);ω] = −
∑
l≥0

Ω(q−ω+l)q−ω+lP ′(q−ω+l)F̄ (ω − l)
P (q−ω)Ω(q−ω)

+
c

P (q−ω)Ω(q−ω)
.

where, from h̃(0) = 0 and letting w → 0 as in the previous section gives

c = −qdΩ(1)αp, αp := −
∑
l≥0

qlP ′(ql)

P (ql)
.

Overall,

M [h̃(z);ω] = −q
dΩ(1)q−ωP ′(q−ω)Γ(ω)

P (q−ω)2Ω(q−ω)

− Γ(ω)

(∑
l≥1

Ω(q−ω+l)q−ω+lP ′(q−ω+l)F̄ (ω − l)
P (q−ω)Ω(q−ω)

+
qdΩ(1)αp

P (q−ω)Ω(q−ω)

)
. (7)

As before, we will use inverse Mellin transform and collect residues. Therefore, we treat
the two terms on the right-hand side of (7) separately. First, for the first one, we have
double poles at c := logQ ρ+ χk. For the singularity expansion at c note that

P (q−ω) = LρP ′(ρ)(ω − c) +
L2ρP ′(ρ) + L2ρ2P ′′(ρ)

2
(ω − c)2 + · · ·

and
q−ωP ′(q−ω) = ρP ′(ρ) + (LρP ′(ρ) + Lρ2P ′′(ρ))(ω − c) + · · · .

From this,
q−ωP ′(q−ω)

P (q−ω)2
=

1

L2ρP ′(ρ)(ω − c)2
+ d∗ + · · · ,
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where d∗ is a constant. Next, we need

1

Ω(q−ω)
=

1

Ω(ρ)
(1 + Lα(ω − c) + · · · ) ,

where

α = −
∑
l≥1

ρqlP ′(ρql)

P (ρql)
.

Plugging this into the first term and using Γ(ω) = Γ(c) + Γ′(c)(ω − c) + · · · , we obtain

− qdΩ(1)q−ωP ′(q−ω)Γ(ω)

P (q−ω)2Ω(q−ω)
� − qdΩ(1)Γ(c)

L2ρP ′(ρ)Ω(ρ)(ω − c)2

− αqdΩ(1)Γ(c)

LρP ′(ρ)Ω(ρ)(ω − c)
− qdΩ(1)Γ′(c)

L2ρP ′(ρ)Ω(ρ)(ω − c)
.

This gives the following contribution to the asymptotic expansion of h̃(z):

− qdΩ(1)

LρP ′(ρ)Ω(ρ)
(logQ z)z− logQ ρ

∑
k

Γ(logQ ρ+ χk)z
−χk

+
qdΩ(1)

LρP ′(ρ)Ω(ρ)
z− logQ ρ

∑
k

(
αΓ(logQ ρ+ χk) +

Γ′(logQ ρ+ χk)

L

)
z−χk .

The second term has simple poles at c with singularity expansion

Γ(ω)

(
−
∑
l≥1

Ω(q−ω+l)q−ω+lP ′(q−ω+l)F̄ (ω − l)
P (q−ω)Ω(q−ω)

− qdΩ(1)αp
P (q−ω)Ω(q−ω)

)

� qdΩ(1)Γ(c)

LρP ′(ρ)Ω(ρ)(ω − c)
(α− αp).

(In the corresponding computation in [12], there occurred a small mistake, since α − αp
was taken to be zero. The present version corrects this.) Hence, the contribution of this

term to the asymptotic expansion of h̃(z) is

− qdΩ(1)

LρP ′(ρ)Ω(ρ)
(α− αp)z− logQ ρ

∑
k

Γ(logQ ρ+ χk)z
−χk .

Adding up the two contributions gives

h̃(z) ∼ − qdΩ(1)

LρP ′(ρ)Ω(ρ)
(logQ z)z− logQ ρ

∑
k

Γ(logQ ρ+ χk)z
−χk

+
qdΩ(1)

LρP ′(ρ)Ω(ρ)
z− logQ ρ

∑
k

(
αpΓ(logQ ρ+ χk) +

Γ′(logQ ρ+ χk)

L

)
z−χk .
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Next, note that due to Lemma 2 and the closure properties of Lemma 2.3 in [6], h̃(z) is
JS-admissible. Consequently, by Proposition 2.2 in [6],∑

k

kpn,k ∼ −
qdΩ(1)

LρP ′(ρ)Ω(ρ)
(logQ n)n− logQ ρ

∑
k

Γ(logQ ρ+ χk)n
−χk

+
qdΩ(1)

LρP ′(ρ)Ω(ρ)
n− logQ ρ

∑
k

(
αpΓ(logQ ρ+ χk) +

Γ′(logQ ρ+ χk)

L

)
n−χk .

Dividing by pn and using Theorem 1 yields∑
k kpn,k
pn

∼ logQ n− αp −
1

L

∑
k Γ′(logQ ρ+ χk)n

−χk∑
k Γ(logQ ρ+ χk)n−χk

.

Finally, by pulling out the average value in the last term on the right-hand side, we obtain
our second main result.

Theorem 2. The expected value of the largest letter in a random word of length n satisfying
the restricted growth property is asymptotically given by

E(Xn) ∼ logQ n− αp −
ψ(logQ ρ)

L
+ Φ(logQ n),

where Φ(z) is a 1-periodic function with average value equal to zero and ψ = Γ′/Γ is the
logarithmic derivative of the Gamma function.

Remark 2. Again Φ(z) is a periodic function with very small amplitude.

4. Conclusion

Let us go back to

f̃(z) + f̃ ′(z) =
d∑
l=1

pql−1f̃(qlz).

We set

f̃(z) =
∑
n≥0

bn
zn

n!
;

then

bn+1 + bn =
d∑
l=1

pql−1qlnbn,

and

bn = −
(

1− p

q

d∑
l=1

qln
)
bn−1 = (−1)n

n∏
j=1

(
1− p

q

d∑
l=1

qlj
)
.

So an explicit expression is available even here. However, it would be unpleasant to work
with it, especially when considering the parameter maximal letter, whereas the approach,
as discussed in this paper, is still quite manageable.
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