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Abstract. Motzkin paths consist of up-steps, down-steps, level-steps, and never go below
the x-axis. They return to the x-axis at the end. The concept of skew Dyck path [1] is
transferred to skew Motzkin paths, namely, a left step (−1,−1) is additionally allowed, but
the path is not allowed to intersect itself. The enumeration of these combinatorial objects
was known [6]; here, using the kernel method, we extend the results by allowing them to
end at a prescribed level j. The approach is completely based on generating functions.

Asymptotics of the total number of objects as well as the average height are also given.

1. Introduction

A Dyck path has up-steps and down-steps of one unit each, and cannot go into negative
territory. Usually, one considers returns to the x-axis at the end, but for partial paths, this
is not required. A Motzkin path allows additional flat (horizontal) steps of unit length. A
skew path allows ‘left’ step (−1,−1) as well, but the path is not allowed to intersect itself.
We prefer ‘red’ steps (1,−1), see our analysis in [5]. For Motzkin paths, some analysis as
provided in [6]. Here, we provide further analysis that allows to consider partial paths as
well, so we don’t need to land at the x-axis. It uses the kernel method [4]. Apart from being
not below the x-axis, the restrictions are that a left (red) step cannot follow or preceed an
up-step.

The situation is best described by a graph (state-diagram); see Figure 1.
In further sections, the asymptotic equivalent for the number of skew Motzkin paths of

given size is derived, as well as the height, meaning that the generating function of paths
with a bounded height (bounded by H) is given, as well as the average height, which is
approximately const ·

√
n, which is typical for families of paths.

2. Generating functions for skew Motzkin paths

We translate the state diagram accordingly; fj, gj, hj, kj are generating functions in the
variable z (marking the length of the path), ending at level j. The four families are related
to the four layers of states.

fj+1 = zfj + zgj + zhj, f0 = 1,

gj = zfj+1 + zgj+1 + zhj+1 + zkj+1,

hj = zfj + zgj + zhj + zkj,

kj = zgj+1 + zhj+1 + zkj+1.
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Figure 1. Four layers of states according to the type of steps leading to them.
Traditional up-steps and down-steps are black, level-steps are blue, and left
steps are red.

Now we introduce bivariate generating functions, namely

F (u) :=
∑
j≥0

fju
j, G(u) :=

∑
j≥0

gju
j, H(u) :=

∑
j≥0

hju
j, K(u) :=

∑
j≥0

kju
j.

The recursions then take this form:

F (u) = 1 + zuF (u) + zuG(u) + zuH(u),

uG(u) = zF (u) + zG(u) + zH(u) + zK(u)− z − zg0 − zh0 − zk0,

H(u) = zF (u) + zG(u) + zH(u) + zK(u),

uK(u) = zG(u) + zH(u) +K(u)− zg0 + zh0 + zk0.

Solving the system,

F (u) =
F

2z − u+ zu− z2u+ zu2 − z3 − z3u
,

G(u) =
G

2z − u+ zu− z2u+ zu2 − z3 − z3u
,

H(u) =
H

2z − u+ zu− z2u+ zu2 − z3 − z3u
,

K(u) =
K

2z − u+ zu− z2u+ zu2 − z3 − z3u
,

with F = −z3 + 2z − u+ zu+ z2u+ z2ug0 + z2uh0 + z2uk0 + z3ug0 + z3uh0 + z3uk0, G =
−z2h0+z4+z4k0−z2ug0−z2u−z2k0−z2−z2uh0−z2uk0+z4h0+z3−z2g0+zh0+zg0+zk0+z4g0,
H = −z4 + 2z2g0 + 2z2h0 + 2z2k0 + 2z2 − zu− z4g0 − z4h0 − z4k0 − z3ug0 − z3uh0 − z3uk0,
K = zg0 − z3 − z2g0 − z2h0 + zk0 − z2k0 − z3g0 − z3h0 − z3k0.
One cannot immediately insert u = 0 to identify the constants, but one can use the kernel

method. For that, one factorises the denominator:

2z − u+ zu− z2u+ zu2 − z3 − z3u = z(u− u1)(u− u2)
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with

u1 =
1− z + z2 + z3 + (1 + z)W

2z
, u2 =

1− z + z2 + z3 − (1 + z)W

2z
and

W =
√

(1− z)(1− 3z − z2 − z3) =
√
1− 4z + 2z2 + z4.

Since u2 ∼ 2z for small z, u − u2 is a ‘bad’ factor and must cancel from both, numerator
and denominator. This yields

F (u) =
−1 + z + z2 + z2g0 + z2h0 + z2k0 + z3g0 + z3h0 + z3k0

z(u− u1)
,

G(u) =
−z2 − z2g0 − z2h0 − z2k0

z(u− u1)
,

H(u) =
−z − z3g0 − z3h0 − z3k0

z(u− u1)
,

K(u) =
−z2g0 − z2h0 − z2k0

z(u− u1)
.

Now we can plug in u = 0 and identify the constants:

g0 =
−z5 + z3W − z2 − zW + 3z − 1 +W

2z2 (−2 + z2)
,

h0 = −−z2 + 2z − 1 +W

2z
,

k0 = −−z4 + z3 + z2W + zW − 3z + 1−W

2z2 (−2 + z2)
.

Adding these quantities yields

1 + g0 + h0 + k0 = −−z2 + 2z − 1 +W

2z2
,

which is the generating function of the number of skew Motzkin paths (returning to the
x-axis); the series expansion is

1 + z+2z2 +5z3 +13z4 +35z5 +97z6 +275z7 +794z8 +2327z9 +6905z10 +20705z11 + · · · ,

as already given in [6], the coefficients are sequence A82582 in [7].
We further get

F (u) =
−1 + z − z2 − z3 + u2z

z(u− u1)
,

G(u) =
(z − u2)

(u− u1)(1 + z)
,

H(u) =
−1− z + 2z2 + z3 − zu2

(u− u1)(1 + z)
,
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K(u) =
z2 + 2z − u2

(u− u1)(1 + z)
.

Altogether,

F (z) +G(z) +H(z) +K(z) =
−1− z + 2z2 + z3 − zu2

z(u− u1)(1 + z)

and

[uj]
(
F (z) +G(z) +H(z) +K(z)

)
=

1 + z − 2z2 − z3 + zu2

z(1 + z)uj+1
1

,

which is the generating function of partial skew Motzkin paths, landing on level j.
Here are the examples for j = 1, 2, 3, 4 (leading terms only):

z + 2z2 + 5z3 + 13z4 + 36z5 + 102z6 + 295z7 + 866z8 + 2574z9 + 7730z10 + 23419z11,

z2 + 3z3 + 9z4 + 26z5 + 77z6 + 230z7 + 694z8 + 2110z9 + 6459z10 + 19890z11 + 61577z12,

z3 + 4z4 + 14z5 + 45z6 + 143z7 + 451z8 + 1421z9 + 4478z10 + 14129z11 + 44654z12,

z4 + 5z5 + 20z6 + 71z7 + 242z8 + 806z9 + 2653z10 + 8670z11 + 28213z12.

One can also substitute u = 1, which means that all partial skew Motzkin paths are
counted with respect to length, regardless on which level they end:

2− 3z − 7z2 − z3 + z4 − (2 + z) (1 + z)W

2z (1 + z) (2z2 + 3z − 1)
.

The series expansion is

1 + 2z + 5z2 + 14z3 + 40z4 + 117z5 + 348z6 + 1049z7 + 3196z8 + 9823z9 + 30413z10 + · · ·

3. Counting flat and left (red) steps

Using two extra variables t and w, we can count the number of flat resp. left steps in a
skew Motzkin path. The recursions are self-explanatory.

fj+1 = zfj + zgj + zhj, f0 = 1,

gj = zfj+1 + zgj+1 + zhj+1 + zkj+1,

hj = ztfj + ztgj + zthj + ztkj,

kj = zwgj+1 + zwhj+1 + zwkj+1.

Again, here is the system for the multi-variate generating functions;

F (u) = 1 + zuF (u) + zuG(u) + zuH(u),

uG(u) = zF (u) + zG(u) + zH(u) + zK(u)− z − zg0 − zh0 − zk0,

H(u) = ztF (u) + ztG(u) + ztH(u) + ztK(u),

uK(u) = zwG(u) + zwH(u) + zwK(u)− zwg0 + zwh0 + zwk0.
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And following a similar procedure as before we get

1 + g0 + h0 + k0 =
−zw + u2

z(1 + wt)

= 1 + tz + (t2 + 1)z2 + (tw + 3t+ t3)z3 + (2 + 6t2 + w + 3wt2 + t4)z4 + · · · ;
the quantity u2 is now

u2 =
1− tz + wz2 + twz3 −

√
(1− z2w)(1− 2 tz + (t2 − 4− w) z2 − 2twz3 − wt2z4)

2z
.

Quantities like F (u), G(u), H(u), K(u) can also be computed easily, following the approach
from the previous section.

4. Asymptotics for the number of skew Motzkin paths

We must analyze the generating function

S M =
(1− z)2 −

√
(1− z)(1− 3z − z2 − z3)

2z2

which is of the sqrt-type [2] around the singularity ρ closest to the origin, which we call ρ.
It is a solution of 1 − 3z − z2 − z3 = 0 and an algebraic number of order 3. We confine
ourselves to real numbers to keep the expressions shorter. We expand everything around
ρ = 0.295597742522084770980996. We find

S M ∼
(1− ρ)2 −

√
2.7142940417132890604(ρ− z)

2ρ2

∼ 2.8392867552141611323− 9.4274931376001571585
√
ρ− z

∼ 2.8392867552141611323− 5.1256244361431546460
√

1− z/ρ.

Singularity analysis of generating function [2] gives the estimate

[zn]S M ∼ 5.1256244361431546460
1

2
√
π
ρ−nn−3/2.

The error at n = 100 is about 3%. This is to be expected by this type of approximation.

5. Skew Motzkin paths of bounded height

Now we introduce a parameter H and don’t allow the path to reach any level higher than
H. We can still work with the system

fj+1 = zfj + zgj + zhj, 0 ≤ j ≤ H − 1, f0 = 1,

gj = zfj+1 + zgj+1 + zhj+1 + zkj+1, 0 ≤ j < H,

hj = zfj + zgj + zhj + zkj, 0 ≤ j ≤ H,

kj = zgj+1 + zhj+1 + zkj+1, 0 ≤ j < H.

This is now a finite linear system, and we are only interested in paths that return to the
x-axis. For a given H, we write s[H] = f0 + g0 + h0 + k0 and let Maple compute these
quantities for the first 20 values of H.
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Both, numerator and denominator of s[H] satisfy the recursion

Xn+2 + (−1 + z − z2 − z3)Xn+1 + (2z2 − z4)Xn = 0.

Thus, adjusting this to the initial conditions, we get

s[n] =
Ao(1 + z3 + z2 − z + ω)n +Bo(1 + z3 + z2 − z − ω)n

Au(1 + z3 + z2 − z + ω)n +Bu(1 + z3 + z2 − z − ω)n

with

Ao = (z3 + z2 + 3z − 1)(z + 1) + (z − 1)ω,

Bo = (z3 + z2 + 3z − 1)(z + 1)− (z − 1)ω,

Au = (1− z2)(z3 + z2 + 3z − 1) +
z3 − z2 + 3z − 1

1− z
ω,

Bu = (1− z2)(z3 + z2 + 3z − 1)− z3 − z2 + 3z − 1

1− z
ω,

ω =
√
z6 + 2z5 + 3z4 − 5z2 − 2z + 1 = (1 + z)W.

When n goes to infinity, the second terms go away, and we are left with

s[∞] =
Ao

Au

=
(1− z)2 −

√
(1− z)(1− 3z − z2 − z3)

2z2
= S M ,

as expected. Now we consider s[> n], the generating function of skew Motzkin paths of
height > n. Taking differences, we find

s[> n] = s[∞]− s[n] =
AoBu − AuBo

Au

(1 + z3 + z2 − z − ω)n

Au(1 + z3 + z2 − z + ω)n +Bu(1 + z3 + z2 − z − ω)n

∼ AoBu − AuBo

A2
u

(
1 + z3 + z2 − z − ω

1 + z3 + z2 − z + ω

)n

1−
(
1 + z3 + z2 − z − ω

1 + z3 + z2 − z + ω

)n .

A computer computation leads to (always in the neighbourhood of z = ρ)

AoBu − AuBo

A2
u

∼ 18.854986275200314363
√
ρ− z.

Now we approximate:

1 + z3 + z2 − z − ω

1 + z3 + z2 − z + ω
∼ 0.81760902991166091601− 2.1345121404980002137

√
ρ− z

0.81760902991166091601 + 2.1345121404980002137
√
ρ− z

∼ 1− 2.6106758394395728799
√
ρ− z

1 + 2.6106758394395728799
√
ρ− z

∼ 1− 5.2213516788791457598
√
ρ− z

∼ exp
(
−5.2213516788791457598

√
ρ− z

)
= e−t,
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for convenience. For the average height, we need apart from the leading factor,∑
h≥0

s[> h] ∼
∑
h≥0

e−th

1− e−th
.

Since we only compute the leading term of the asymptotics of the average height, we might
start the sum at h ≥ 1, and expand the geometric series:∑

h≥1

s[> h] ∼
∑
h,k≥1

e−thk =
∑
k≥1

d(k)e−kt ∼ − log t

t
,

with d(k) being the number of divisors of k. This type of analysis, although having been
done often before, has been described in much detail in [3]. Together with the factor in front,
we are at

− 18.854986275200314363
√
ρ− z

log
√
ρ− z

5.2213516788791457598
√
ρ− z

= −18.854986275200314363
log

√
ρ− z

5.2213516788791457598
= −1.8055656307800996608 log(ρ− z)

∼ −1.8055656307800996608 log(1− z/ρ).

Singularity analysis [2] gives the following estimate for the coefficient of zn:

1.8055656307800996608
ρ−n

n
.

For the average height we need to normalize, which is to divide by the total number of skew
Motzkin numbers of size n:

1.8055656307800996608ρ−n

n

5.1256244361431546460 1
2
√
π
ρ−nn−3/2

= 0.70452513767814089508
√
πn.
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