GRAND MOTZKIN PATHS AND $\{0,1,2\}$-TREES - A SIMPLE BIJECTION

HELMUT PRODINGER

Abstract

A well-known bijection between Motzkin paths and ordered trees with outdegree always ≤ 2, is lifted to Grand Motzkin paths (the nonnegativity is dropped) and an ordered list of an odd number of such $\{0,1,2\}$ trees. This offers an alternative to a recent paper by Rocha and Pereira Spreafico.

1. Introduction

Motzkin paths appear first in [6]. In the encyclopedia [9] they are enumerated by sequence A001006, with many references given. They consist of up-steps $U=(1,1)$, downsteps $D=(1,-1)$ and horizontal (flat) steps $F=(1,0)$. They start at the origin and must never go below the x-axis. Usually one requires the path to end on the x-axis as well, but occasionally one uses the term Motzkin path also for paths that end on a different level. Figure 1 shows all Motzkin paths of 4 steps (=length 4).

Figure 1. All 9 Motzkin of 4 steps (length 4).
The enumeration of Motzkin paths is done using the generating function $M=M(z)$ and a decomposition according to the first return to the x-axis, viz.

$$
M=1+z M+z^{2} M^{2}
$$

this can be found in many books, e.g. in [5]. Solving,

$$
M(z)=\frac{1-z-\sqrt{1-2 z-3 z^{2}}}{2 z^{2}}
$$

The other combinatorial structure that plays a role in this note are ordered trees. They are enumerated by an equation for the generating function (according to the number of nodes)

$$
P=z+z P+z P^{2}+z P^{3}+\cdots=\frac{z}{1-P} \quad \text { and therefore } \quad P=P(z)=\frac{1-\sqrt{1-4 z}}{2} .
$$

[^0]The subclass of $\{0,1,2\}$-trees of interest only allows outdegrees $0,1,2$ and so we get again a generating function

$$
Q=z+z Q+z Q^{2} \quad \text { and therefore } \quad Q=Q(z)=\frac{1-z-\sqrt{1-2 z-3 z^{2}}}{2 z}=z M(z)
$$

So there should be a bijection of $\{0,1,2\}$-trees with $n+1$ nodes ($=n$ edges) and Motzkin paths of length n; the simplest I know is from [3]:

One runs through the $\{0,1,2\}$-tree in pre-order; if one sees an edge for the first time, one translates a single edge (degree 1) into a flat step, a left edge into an up-step and a right edge into a down-step. It is easy to see that the process is reversible, which is the desired bijection.

2. Grand Motzkin paths

As a first step, we need the generating function of Motzkin paths, ending on level k, not just the usual case 0 . This is a standard argument, by decomposing such a path according to the last time you visit level 0 , then an up-step, and we wait until we visit level 1 for the last time, and so one.

Figure 2. The decomposition of a Motzkin path that ends at level 2.
From this we find the generating function as $z^{k} M^{k+1}$. This is well-known.
Now we come to Grand Motzkin paths, a notation I picked up from [4]. This more general family has the same steps as Motzkin paths, returns to the x-axis at the end, but the condition that the paths must stay (weakly) above the x-axis is dropped.

Let k be the unique negative number such that the Grand Motzkin paths reaches the level $-k$ when going from left to right; for $k=0$ they are just ordinary Motzkin paths. We consider the first such point $(a,-k)$ and the last such point $(b,-k)$; it is possible that $a=b$. Then the paths decomposes canonically into 3 parts: This decomposition produces the generating function of such paths as a product of 3 terms: The first part corresponds

Figure 3. The decomposition of a Grand Motzkin path that has -3 as its minimal level.
to $z \cdot z^{k-1} M^{k}$ (the last step must be a down-step), the second part to M, and the third part again to $z \cdot z^{k-1} M^{k}$ (the first step must be an up-step). The product is then $z^{2 k} M^{2 k+1}$. Summing over all possible values of k, the enumeration of Grand Motzkin paths is done via the generating function

$$
M+\sum_{k \geq 1} z^{2 k} M^{2 k+1}=\sum_{k \geq 0} z^{2 k} M^{2 k+1}=\frac{1}{\sqrt{1-2 z-3 z^{2}}} .
$$

In the world of $\{0,1,2\}$-trees, we form a new super-root, with $2 k+1$ successors, each of which is a $\{0,1,2\}$-tree. The generating function is then

$$
z \sum_{k \geq 0} Q^{2 k+1}=z^{2} \sum_{k \geq 0} z^{2 k} M^{2 k+1}=\frac{z^{2}}{\sqrt{1-2 z-3 z^{2}}}
$$

The previous bijection takes over to the new situation: if a grand Motzkin path consists of $2 k+1$ ordinary Motzkin paths, then each of them corresponds to a $\{0,1,2\}$-tree as before. The extra factor z^{2} stems from the fact that for $\{0,1,2\}$-trees, the edges correspond to the steps. And now, there is the super-root, which should not be counted when considering the corresponding Grand Motzkin path.

The paper [8] has a correspondence between Grand Motzkin paths and \{0, 1, 2\}-trees with a super-root with an odd number of successors. However the arguments are perhaps less direct than the present ones.

3. Trinomial coefficients and enumeration

The trinomial coefficients (notation from Comtet [1]) are given by

$$
\binom{n, 3}{k}=\left[z^{k}\right]\left(1+z+z^{2}\right)^{n}
$$

These coefficients are intimately related to the Motzkin-world, as we will discuss for the reader's benefit. We use the substitution $z=\frac{v}{1+v+v^{2}}$ as we first did in [7]. Using this substitution, all generating functions become much easier, like

$$
Q(z)=v, \quad \frac{1}{\sqrt{1-2 z-3 z^{2}}}=\frac{1+v+v^{2}}{1-v^{2}} .
$$

Coefficients can be extracted via contour integration, which is a variant of the Lagrange inversion formula. See [2] and [7] as illustrations of the technique. Note that when z runs around the origin in a small circle, v runs around the origin once as well, in a deformed circle. We will show two sample computations:

$$
\begin{aligned}
{\left[z^{n}\right] \frac{1}{\sqrt{1-2 z-3 z^{2}}} } & =\frac{1}{2 \pi i} \oint \frac{d z}{z^{n+1}} \frac{1}{\sqrt{1-2 z-3 z^{2}}} \\
& =\frac{1}{2 \pi i} \oint \frac{d v\left(1-v^{2}\right)}{\left(1+v+v^{2}\right)^{2}} \frac{\left(1+v+v^{2}\right)^{n+1}}{v^{n+1}} \frac{1+v+v^{2}}{1-v^{2}} \\
& =\frac{1}{2 \pi i} \oint \frac{d v}{v^{n+1}}\left(1+v+v^{2}\right)^{n}=\left[v^{n}\right]\left(1+v+v^{2}\right)^{n}=\binom{n, 3}{n}
\end{aligned}
$$

and

$$
\begin{aligned}
{\left[z^{n}\right] Q^{j} } & =\frac{1}{2 \pi i} \oint \frac{d z}{z^{n+1}} v^{j}=\frac{1}{2 \pi i} \oint \frac{d v\left(1-v^{2}\right)}{\left(1+v+v^{2}\right)^{2}} \frac{\left(1+v+v^{2}\right)^{n+1}}{v^{n+1}} v^{j} \\
& =\frac{1}{2 \pi i} \oint \frac{d v\left(1-v^{2}\right)}{v^{n+1-j}}\left(1+v+v^{2}\right)^{n-1} \\
& =\left[v^{n-j}\right]\left(1+v+v^{2}\right)^{n-1}-\left[v^{n-j-2}\right]\left(1+v+v^{2}\right)^{n-1}=\binom{n-1,3}{n-j}-\binom{n-1,3}{n-j-2} .
\end{aligned}
$$

References

[1] Louis Comtet. Advanced Combinatorics. D. Reidel Publishing Co., Dordrecht, enlarged edition, 1974. The art of finite and infinite expansions.
[2] Nicolaas G. de Bruijn, Donald E. Knuth, and Stephen O. Rice. The average height of planted plane trees. In Graph Theory and Computing, pages 15-22. Academic Press, New York, 1972.
[3] Emeric Deutsch and Louis W. Shapiro. A bijection between ordered trees and 2-Motzkin paths and its many consequences. volume 256, pages 655-670. 2002. LaCIM 2000 Conference on Combinatorics, Computer Science and Applications (Montreal, QC).
[4] Luca Ferrari and Emanuele Munarini. Enumeration of edges in some lattices of paths. Journal of Integer Sequences, 17:14.1.5 (22 pages), 2014.
[5] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University Press, Cambridge, 2009.
[6] Theodore S. Motzkin. Relations between hypersurface cross ratios, and a combinatorial formula for partitions of a polygon, for permanent preponderance, and for non-associative products. Bulletin of the American Mathematical Society, 54 (4):352-360, 1948.
[7] Helmut Prodinger. The average height of a stack where three operations are allowed and some related problems. J. Combin. Inform. System Sci., 5(4):287-304, 1980.
[8] Leandro Rocha and Elen V. Pereira Spreafico. A combinatorial bijection between ordered trees and lattice paths. Trends in Computational and Applied Mathematics, 24(3):427-436, 2023.
[9] Neil J. A. Sloane and The OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences, 2023.
Department of Mathematics, University of Stellenbosch 7602, Stellenbosch, South Africa and NiTheCS (National Institute for Theoretical and Computational Sciences), South Africa.

Email address: hproding@sun.ac.za

[^0]: 2010 Mathematics Subject Classification. 05A15.
 Key words and phrases. Motzkin paths, unary-binary trees, bijection.

