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Abstract

A variation of Dyck paths allows for down-steps of arbitrary length, not just one.
This is motivated by ideas due to Emeric Deutsch. We use the adding-a-new-slice tech-
nique and the kernel method to compute the number of maximal runs of up-step runs
of length 1 and a subclass of Deutsch paths satisfying a condition that was stipulated
by R. Stanley for Dyck paths.
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1 Introduction

A Dyck path consists of up-steps (1, 1) and down-steps (1,−1). They start at the origin,
end at the origin and never go below the x-axis.

The path in the example is a Dyck path of length 20, and has 4 ‘mountains’, i.e. a maximal
sequence of up-steps followed by a maximal sequence of down-steps. Sometimes we also
allow a path to end at a level different from zero. To emphasize the fact that the end-level
is unspecified, we use the word open. In [1], this is called a meander, whereas the version
that returns to the x-axis is called an excursion.

Deutsch paths are like Dyck paths, but extra down-steps of the form (1,−j), for any
j ≥ 2, are also allowed. They were analyzed recently in [9]. Here, we want to enumerate
them in a different manner which is quite versatile when certain parameters of Deutsch
paths should be analyzed.

We decompose a Deutsch path into maximal runs of up- resp. down-steps. First, we
restrict our attention to the instance when the path ends with down-steps. If a path is
closed (=ends on the x-axis), this happens anyway (except for the empty path), but for
open-ended paths, the last step of the path might be an up-step.

The technique we are using can be found in [2].
We consider two applications: It is well-known that the n-th Catalan number Cn =

1
n+1

(
2n
n

)
enumerates Dyck paths of length 2n. In [11], Stanley lists a variety of other
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combinatorial interpretations of the Catalan numbers, one of them being the number of
Dyck paths from (0, 0) to (2n+ 2, 0) such that any maximal sequence of consecutive (1,−1)
steps ending on the x-axis has odd length. At this point it is interesting to note that there
are more subclasses of Dyck paths, also enumerated by Catalan numbers, that are defined
via parity restrictions on the length of the returns to the x-axis as well (see, e.g., [11]). This
restriction of Dyck paths that leads again to Catalan numbers was further investigated in
[5]. In this paper, we consider Deutsch paths with the property that each maximal run of
down-steps to the x-axis starts at an odd level. Unfortunately, in this context, this does not
lead to any known or nice numbers.

In the last section, we count the number of maximal sequences of up-steps consisting of
only one up-step in Deutsch paths.

In the paper [6], the authors counted the number of maximal runs of up-steps of length
one in Dyck paths. This was greatly extended in [4]; the method of choice in the first
incarnation of this paper was indeed the adding-a-new-slice technique combined with the
kernel method. We keep our analysis in the instance of Deutsch paths simple and only
consider the basic case, leaving more general considerations for later.

2 Enumeration of Deutsch paths by the adding-a-new-
slice technique

We consider a generating function Fk(z, u), where k is the number of ‘mountains’ (runs of
up-steps, followed by runs of down-steps), z marks the length of the path and u is used to
remember the last level reached (coefficient of uj). To be more precise, the coefficient of
znuj in Fk(z, u), for which we write [znuj ]Fk(z, u) is the number of Deutsch paths with k
mountains, length n, and ending on level j.

The extra down-steps require some preparations. If one want to go down by h ≥ 1 levels,
and do this in n ≥ 1 steps, it can be done in

[zh]
( z

1− z

)n
= [zh−n](1− z)−n =

(
h− 1

h− n

)
ways. (The notation of [zh]f(z) refers, as just said, to the coefficient of zn in a generating
function f(z).) To understand this, we are looking at the coefficient of zh in

(z + z2 + · · · )(z + z2 + · · · ) . . . (z + z2 + · · · )︸ ︷︷ ︸
n copies

,

and any choice of i1 + · · ·+ in = h is a possibility to go down by h levels in n steps. If one
wants to keep n variable, using a generating function, we get, using the binomial theorem,

h∑
n=1

(
h− 1

h− n

)
zn = z(1 + z)h−1. (1)

This will also be used later. And now, for modeling a new mountain, we have to compute
this: ∑

k>i

zk−i
∑

0≤j<k

ujz(1 + z)k−1−j =
z2(1 + z)i+1

(1− z − z2)(1 + z − u)
− z2ui+1

(1− zu)(1 + z − u)
.
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Consequently we have

Fk+1(z, u) =
z2(1 + z)

(1− z − z2)(1 + z − u)
Fk(z, 1 + z)− z2u

(1− zu)(1 + z − u)
Fk(z, u).

With
Φ(z, u) :=

∑
k≥0

Fk(z, u),

(arbitrary number of mountains) this leads to

Φ(z, u)− 1 =
z2(1 + z)

(1− z − z2)(1 + z − u)
Φ(z, 1 + z)− z2u

(1− zu)(1 + z − u)
Φ(z, u)

or
z(u− u1)(u− u2)

(1− zu)(1 + z − u)
Φ(z, u) = 1 +

z2(1 + z)

(1− z − z2)(1 + z − u)
Φ(z, 1 + z),

with

u1,2 =
1 + z ±

√
1− 2z − 3z2

2z
.

A naive approach to solve this functional equation would be to plug in u = 1 + z and
solve. However, this leads to a void equation. The kernel method is a way to still use
the idea of plugging in, but first a ‘bad’ factor has to be removed from numerator and
denominator. One of two factors (u − u1(z)), (u − u2(z)) is bad, since, when appearing
in the denominator, does not lead to a valid power series expansion around (0, 0). In this
instance, u− u2(z) ∼ u− z + · · · and this is the bad factor. Rephrasing, setting u := u2(z)
leads to an equation, since the bad factor must be cancelled from both, numerator and
denominator.

As it was shown already in [9], we are in the Motzkin world. Recall that the generating
function of Motzkin-paths (Dyck paths, but horizontal steps are also allowed) is given by

M(z) =
1− z −

√
1− 2z − 32

2z2
.

Now we use arguments from the kernel method [7], as just recapitulated. The factor (u−u2)
must also be a factor of the right-hand side, otherwise there would not be a power series
expansion around z = 0. This leads to

1 + z2(1+z)
(1−z−z2)(1+z−u)Φ(z, 1 + z)

u− u2
= − 1

1 + z − u
.

Further simplification leads to

Φ(z, u) = − (1− zu)

z(u− u1)
=

1− zu
zu1(1− u/u1)

.

Setting u = 0 means that the path ends on the x-axis:

Φ(z, 0) =
1

zu1
=

1 + z −
√

1− 2z − 3z2

2z(1 + z)
= 1 + z2 + z3 + 3z4 + 6z5 + 15z6 + 36z7 + · · · .

The coefficients of this series are sometimes called Riordan numbers, see A005043 in [8]. As
an illustration, we provide the 6 Deutsch paths (returning to the x-axis) of length 5:
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As seen already in [9], the substitution z =
v

1 + v + v2
makes everything prettier:

Φ(z, 0) =
1 + v + v2

1 + v
.

The function

Φ(z, u)
1

1− zu
describes Deutsch paths that can also end with up-steps. And if one replaces now u := 1,
we get so-called open Deutsch paths, that can end at any level:

Φ(z, 1)
1

1− z
=

1

z(u1 − 1)
= 1 + v + v2,

which also enumerates Motzkin paths. This was explained via a bijection in [9]. Let us
emphasize that Φ(z, 1) is the generating function of open Deutsch paths ending with down-
steps, and 1

1−z is the generating function of a possible sequence of up-steps at the end.

3 Deutsch paths satisfying a condition by Stanley

As mentioned above, the function

Φ(z, u)
1

1− zu
describes Deutsch paths that can also end with up-steps. Consequently,

G (z, u) = Φ(z, u)
zu

1− zu
=

u

u1(1− u/u1)
=
∑
k≥1

uk

uk1

is the generating function of paths (‘good’ paths) ending with an up-step. From this we see
that the good paths ending on level k have generating function 1/uk1 .

In the spirit of Stanley, we now compute good Deutsch paths, ending on the odd level
2k + 1, and return after that for the first time in a series of down-steps to the x-axis:

z
∑
k≥0

1

u2k1
· z(1 + z)2k =

z2

1− (1 + z)2/u21
.

To clarify, the first z in this formula is responsible for a first extra up-step, making sure
that returns to the x-axis occur only at the end. The other factor z belongs to z(1 + z)2k

and originates from formula (1).
The final step is to consider an arbitrary sequence of such paths, viz.

1

1− z2

1−(1+z)2/u2
1

=
3 + z −

√
1− 2z − 3z2

2(1 + z)
=

1 + 2v + 2v2

(1 + v)2
.
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This series is

1 + z2 + 2z4 + 2z5 + 7z6 + 14z7 + 37z8 + 90z9 + 233z10 + · · · ,

and the coefficients do not bare any significance to Motzkin numbers.
For interest, here are the 7 objects of length 6, satisfying the Stanley-condition that each

down-run to the x-axis starts at an odd level.

The first and the last are Dyck-paths, and 2 is indeed the Catalan number C2.

4 Counting runs of single up-steps

The approach is quite similar to the previous sections; however, we use a third variable, t,
to count the up-runs of length one.

We have to compute this (for t = 1, it coincides with the previous computation):∑
k>i+1

zk−i
∑

0≤j<k

ujz(1 + z)k−1−j + tz
∑

0≤j≤i

ujz(1 + z)i−j ,

which leads to

Fk+1(z, u) = αFk(z, u) + βFk(z, 1 + z)

with

α =
z2u (−zu+ tzu− t)
(1− zu)(1 + z − u)

and β = −z
2(1 + z)(−z − z2 + tz + tz2 − t)

(1− z − z2)(1 + z − u)
.

This leads to

Φ(z, u)− 1 = αΦ(z, u) + βΦ(z, 1 + z)

or
z(1 + z2 − tz2)(u− u1)(u− u2)

(1− zu)(1 + z − u)
Φ(z, u) = 1 + βΦ(z, 1 + z),

The two roots are now

u1,2 =
−tz2 + z + 1 + z2 ±

√
t2z4 + 2tz3 − 2tz2 + 2tz4 − z2 − 2z − 2z3 + 1− 3z4

2z(1 + z2 − tz2)
.

Simplification, after dividing out the factor u− u2 from the equation, leads to

Φ(z, u) =
(1− zu)

z(1 + z2 − tz2)(u1 − u)
.
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This time, we confine ourselves to the instance u = 0, i.e., Deutsch paths returning to the
x-axis. We get

Φ(z,0) =
1

z(1 + z2 − tz2)u1

=
−tz2 + z + 1 + z2 −

√
t2z4 + 2tz3 − 2tz2 + 2tz4 − z2 − 2z − 2z3 + 1− 3z4

2z(1 + z)(z2 − tz2 + 1)

= 1 + tz2 + z3 + (t2 + 2)z4 + (3 + 3t)z5 + (7 + 7t+ t3)z6 + (17 + 13t+ 6t2)z7 + · · · .

Once one has this generating function, one can state many results as a corollary. We will
only provide one such result, namely, the average of the parameter labelled by the variable
t. So, we differentiate Φ(z, 0) w.r.t. t and then set t := 1. This leads to

v2

(1− v)(1 + v)2(1 + v + v2)
.

We prefer the factored form since the term 1+v+v2 immediately reminds us of the Motzkin-
world.

One could even read off the coefficients from this, but this would lead to a sum, so we
refrain from doing this. However, we are interested in asymptotics. We will use singularity
analysis, as is now customary, see [3]. In particular Example VI.3. on page 396 discusses
the basics of the asymptotics of Motzkin numbers.

The relevant singularity is at z = 1
3 , and we find, as z → 1

3 (the square root vanishes at
this value, and it is the closest value to the origin with this property). Since

v =
1− z −

√
1− 2z − 3z2

2z
,

the singularity translates into v = 1, and one can compute a local expansion:

v ∼ 1−
√

3
√

1− 3z ⇐⇒ 1− v ∼ −
√

3
√

1− 3z.

Furthermore,

v2

(1− v)(1 + v)2(1 + v + v2)
∼ 1

12(1− v)
∼

√
3

36
√

1− 3z
.

Therefore

[zn]
v2

(1− v)(1 + v)2(1 + v + v2)
∼ [zn]

√
3

36
√

1− 3z
∼
√

3

36
3n

1√
πn

.

The table on page 388 in [3] is particularly useful to translate from local expansions to
asymptotics of coefficients.

This needs to be divided by the total number of such paths (the coefficient of zn in
Φ(z, 0)), viz.

[zn]
1 + v + v2

1 + v
∼ [zn]

(3

2
− 3
√

3

4

√
1− 3z

)
∼ 3
√

3

8
3n

1√
πn3/2

.

The quotient is

∼ 2n

27
= 0.074n.

So, a Deutsch path of length n has about 0.074n up-runs of length 1. Many such results
could be derived with some patience and a computer.
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5 Concluding remarks

We have demonstrated the usefulness of the adding-a-new-slice technique [2] in the in-
stance of the relatively new class of Deutsch paths, introduced in [9]. Whenever it is pos-
sible to describe how a new mountain is created, a functional equation can be written. A
variation of the idea of Deutsch paths is to use down-steps −1,−3,−5,−7, . . . instead of
−1,−2,−3,−4, . . . , as done here. This situation was analyzed in [10], but not with the
adding-a-new-slice method. This is probably possible, but instead of a quadratic equation
with 2 factors, a cubic equation with 3 factors will play a role, and either one or two of them
(depending on the model) need to be cancelled out.

Acknowledgment. The insightful comments of one referee resulted in a much more elab-
orate and hopefully clearer exposition of this material.
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