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Some properties of the language {w E (a, b}* 1 d;) = (g)}, which can be regarded as a general- 
ization of the (unrestricted) Dyck-language, are given. (Q are the binomial coefficients 
for words.) 

Let c* be the free monoid generated by the alphabet 2 with unit E. The 
binomial coefficients for words are defined as folPows: For X, y e C * let (5) be the 
number of factorizations x: = ~~~~~~ . l l x,,-lc,,x,, where y = cl l l l c,,, Ci E Z. They 
appear for the first time in [l] within the context of p-groups. They can be used in 
order to embed the monoid C* in the 
noncommuting variables (I EC with reai 

m /w\ 

See also the reference given in [S]. Since they are a generalization of the ordinary 

ring of all formal power series in the 
coefficients by means of 

binomial coefficients (3 (for Z = {a) and with the identification (T” = n), they seem 
to be important from a combinatorial point of view. 

In the sequel it is assumed that C is the two letter alphabet (a, b). 
The (unrestricted? Dyck-language D (cf. [2]) can be expressed as 

D=[wc{a,b)* 1 (I)=(y)}. 

This leads to the following generalization: For X, y E (12, b)” let 

D(x, y) = I w c{a, b}* I (:>= (;)I* 
In this paper the case x’ = ab, y = ba will be considered. For sake of convenience 
D(ab, ba) is shortly denoted by A in the sequel. 
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It is necessary to give few additional definitions: For w E {a, b}” let 1 w 1 denote 
the length of w and wR the mirror image. 

NW):= (,w,)-(,w,>. 
Clearly A = {w E {a, b)* 1 A(w) = 0). Finally let a(a) = 1 and a(b) = -1. 

The structure generating function of a language L G c* is the formal power 
series CF_cl u,,Y, where u, = IL n {a, b)” I. (Cf. [6].) For L E 2” the syntactic 
congruence -L is defined by x: -,._ y iff for all u, 21 E 2 * uxz) E L holds exactly if 
uyv E L holds (cf. [l]). 

This paper gives the following results about the language A: Differently from D 
A is not contextfree. A submonoid of 3 ~3 matrices with integer coefficients 
which is isomorphic to the syntactic monoid S*/-* of A will be given. The 
coeficients u, of the structure generating function of A are examined. It turns out 
that u,, iS the number of solutions of 

i q&2+1---2k)=O (&kE{_l,+l)). 
k=l 

The asymptotic behaviour of u, will be established by a method similar to that of 
Van Lint [4]. 

2. Resdts 

Theorem 1. A is not contextfree. 

Proof. It is sufficient to prove that A’: = A n R is not contextfree, where R is the 
regcrlar language a%’ u+b+. 

For irlci,, 

I’herefore u’b2’u3’b’ E A’. Assuming A4’ to be contextfree the uvwxy-theorem (cf. 
[3]) guarantees a facrorization uib%“P = uvwxy, where i is large enough and 
ux # E, lz~wxl s m, such that uv”wx”y E A’ for all n E NO. It is a simple calculation 
to show that a!1 possible factorizations lead to a contradiction by taking a suitable 
n. 

Next the syntactic congruence -A is characterized. 

Theorem 2. x aA y if and only if A(x) = A(y), (3 = (i) ud (g) = (I)* 

Proof. First it should be noted that w =z wR implies A(w) = 0. 
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Let be x -A y and u E {a, b}*. Then 

xu(xu)” -A yU(xf’f)R and (xu)“xu -A (xU)RyU. 

Since XU(XU)~E A ((XU)~XU E A) it follows that BUD E A ((xu)~~u E A). 

Therefore 

and 

O=A((~u)~yu)=A(yu)-A(xu)+ 
(“,“>M- cx3 

Adding these equations 

A(xu) = A(yu) and 

for each u is obtained. Setting u = e yields 

A(X) - A(y) and 

Setting u = a yields 

t?(yba)= cx’,“) 
or equivalently 

from which (i) = (z) follows. For u = b (z) = (z) is obtained in a similar way. 
A simple calculation gives the second part of the proof. 

Remark. Since 

A(w) =2(,w6)+ (‘I))+ pi))- (‘I’) 

the condition 

A(x) = A(y) and (:I= (3 ar1d (3= (3 

is equivalent to 



Now the syntactic monsid of A can be described, For this purpose let A4 be the 
submsnsid of the (multiplicative) monoid of 3 X Smatrices with integer coefii- 
cknts which is generated by 

Praot, It :s aasy to MM that 

Q!W):= 

is the unique hsmemsrphi~m from (a, b)* onto M far which Q(O) 
Q(b) = itIp 

By Theorem 2 and the remark Q(X) Q(y) if and only if X -A ye &3na -A ia 
the congruence induced by Q, 

Let zEeo w,,z” be the structure generating function of A, To Btudy the asJymg= 
tstic behavieur of w, some greg8rationB Ire made. 

2AM = t &a,& =t= 1~:2k). 
k=l 

Proof, By induction on n, 
(9 For n = 0, La, w = B the statement is abviaun, 
(ii) Now let 1 w I= n be assumed, 

2A(wn)=2A(wb2(3 

since 
w w -( >-( a b 

=-n=o(a)((n+l)+l-2(n+l)). 

The calcufation for wb is simila;. 



(C is the unit circle in the complex glmeJ The substitution z = e’” yields 

For w/2(2m - 1) w/2 ibl 

fi ed (2k - 1)x = O(6rrn’“). 
k=l 

cas” x *= 8+ 

holds, Therefore 

fl COS’ (2k - 1)x dx < 
I 

w’2(2m-” exp [--x2 2 (2k - lJ*] dx 
1 k=l 

exp [-x2f!$-;)] dx 
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Similar to the ealeulatisn in [4] it will be shown that the symbol rc<99 can be 
replaaxl by “m”: 

Let 0 6 x < ~YI-~~/‘, then 

Thus 

Hence 

2 
zrn-l 3 

0 

“2 
U2m -- 

- ,-312, 
w 

For n = 2m f 1 a similar calculation shows that 

3 II2 

92m+’ - U2m+1- .+ 0 nl-3’2 . 
7r 

The number of solutions of 

F E&+1-2k)=O 
k:?* 

is the same as the number of solutions of 

k=l 

n12 

c &(2k-l)=O (y’;& = o), 
k=l 

for even (odd) n: 
To show the first statement let be y1= 201. 

2m 

c %(2m+1-2k)= f E,(bl+b2k)+ ‘f &k(2m+l-2k) 
k=l k=l k=m+l 

m 
= c Em+l-i(2i-l)+ f e,+i(l_2i) 

i=l i =: 1 
m 

= 
Cc Em+ 1-i - Em+i)(2e” - 1). 

i=l 



Defining f ==&3,,+, - gm+,) there ia 8 l-1 csrre8gsndence between the two 
aete~ of 8olutiens, The axon8 Btatement can lx Been in a similar way, 

If in a solution all & ore in {- 1, f I}, the corresponding ward w E A hrrg the 
property that it ha8 no factorization w = xcycz where 1x1= lzl and c E (a, B), Let B 
denote the abset of A which contain8 exactly the words with this property, Then 
the asymptotic behdsur of the ceefkients on of the structure generating 
function of B can be efitablished by method8 similar to those of Theorem 4, 

Theorem 5. 

for ~51.2 (mod4). 

Proof, 

(2 2k-1 + Z-‘2k-l) 

z 

=; 6 fi cos (2k - 1)x dx 
k=l 

A cos (2k - 1)x dx for even n 
= k=l 

for odd n. 

Now let n be even: For 0 < x < n/2, cos x < ewX212 holds. 

d m/2(2n-I) n 
1 

90 

n cos (2k - 1)x dx < 
k=l 

exp -+x2 f (2k-1)2 dn 
k=l 1 

- (31#‘~(2n)-“~. 

1 
dz 2” u2n+1== fi (zk+z-k)-=- 

k=l z ‘TT 

coskxdx n=0,3 (mod4) 
= 77 

n = 1,2 (mod 4). 

Now let n = 0,3 (mod 4): 

cos kx dx<$‘2nexp [-$il k2]dx_i3rr)1/2(2n3)-1/2. 

The justification that “C” can be replaced by “m” is as in Theorem 4. 
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