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ABSTRACT. Stanley lists the class of Dyck paths where all returns to the axis are of odd length as
one of the many objects enumerated by (shifted) Catalan numbers. By the standard bijection
in this context, these special Dyck paths correspond to a class of rooted plane trees, so-called
Catalan–Stanley trees.

This paper investigates a deterministic growth procedure for these trees by which any
Catalan–Stanley tree can be grown from the tree of size one after some number of rounds; a
parameter that will be referred to as the age of the tree. Asymptotic analyses are carried out
for the age of a random Catalan–Stanley tree of given size as well as for the “speed” of the
growth process by comparing the size of a given tree to the size of its ancestors.

1. INTRODUCTION

It is well-known that the nth Catalan number Cn =
1

n+1

�2n
n

�

enumerates Dyck paths of
length 2n. In [10], Stanley lists a variety of other combinatorial interpretations of the Catalan
numbers, one of them being the number of Dyck paths from (0,0) to (2n+2, 0) such that any
maximal sequence of consecutive (1,−1) steps ending on the x-axis has odd length. At this
point it is interesting to note that there are more subclasses of Dyck paths, also enumerated
by Catalan numbers, that are defined via parity restrictions on the length of the returns to the
x-axis as well (see, e.g., [1]). The height of the class of Dyck paths with odd-length returns
to the origin has already been studied in [9] with the result that the main term of the height
is equal to the main term of the height of general Dyck paths as investigated in [2].

By the well-known glove bijection, this special class of Dyck path corresponds to a special
class S of rooted plane trees, where the distance between the rightmost node in all branches
attached to the root and the root is odd. This bijection is illustrated in Figure 1.

The trees in the combinatorial class S are the central object of study in this paper.

Definition. Let S be the combinatorial class of all rooted plane trees τ, where the rightmost
leaves in all branches attached to the root of τ have an odd distance to the root. In particular,

itself, i.e., the tree consisting of just the root belongs to S as well. We call the trees in S
Catalan–Stanley trees.
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¬

FIGURE 1. Bijection between Dyck paths with odd returns to zero and Catalan–
Stanley trees. �marks all peaks before a descent to the x-axis and all rightmost
leaves in the branches attached to the root, respectively.

There are some recent approaches (see [7, 8]) in which classical tree parameters like the
register function for binary trees are analyzed by, in a nutshell, finding a proper way to grow
tree families in a way that the parameter of interest corresponds to the age of the tree within
this (deterministic) growth process.

Following this idea, the aim of this paper is to define a “natural” growth process enabling
us to grow any Catalan–Stanley tree from , and then to analyze the corresponding tree
parameters.

In Section 2 we define such a growth process and analyze some properties of it. In par-
ticular, in Proposition 2.4 we characterize the family of trees that can be grown by applying
a fixed number of growth iterations to some given tree family. This is then used to derive
generating functions related to the parameters investigated in Sections 3 and 4.

Section 3 contains an analysis of the age of Catalan–Stanley trees, asymptotic expansions
for the expected age among all trees of size n and the corresponding variance are given in
Theorem 1.

Section 4 is devoted to the analysis of how fast trees of given size can be grown by inves-
tigating the size of the rth ancestor tree compared to the size of the original tree. This is
characterized in Theorem 2.

We use the open-source computer mathematics software SageMath [3] with its included
module for computing with asymptotic expansions [6] in order to carry out the computa-
tionally heavy parts of this paper. The corresponding worksheet can be found at https:
//benjamin-hackl.at/publications/catalan-stanley/.

2. GROWING CATALAN–STANLEY TREES

We denote the combinatorial class of rooted plane trees with T , and the corresponding
generating function enumerating these trees with respect to their size by T (z). For the sake
of readability, we omit the argument of T (z) = T throughout this paper. By means of the
symbolic method [5, Chapter I], the combinatorial class T satisfies the construction T =
× SEQ(T ). It translates into the functional equation

T (z) =
z

1− T (z)
⇐⇒ z + T (z)2 = T (z), (1)

https://benjamin-hackl.at/publications/catalan-stanley/
https://benjamin-hackl.at/publications/catalan-stanley/
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which will be used throughout the paper. Additionally, it is easy to see by solving the quadratic
equation in (1) and choosing the correct branch of the solution, we have the well-known
formula T (z) = 1−

p
1−4z
2 .

Proposition 2.1. The generating function of the combinatorial class S of Catalan–Stanley
trees, where t marks all the rightmost nodes in the branches attached to the root of the tree and
z marks all other nodes, is given by

S(z, t) = z +
zt

1− t − T 2
. (2)

In particular, there is one Catalan–Stanley tree of size 1 and Cn−2 Catalan–Stanley trees of size
n for n≥ 2.

S = +
SEQ

� T

T

�

SEQ
� T

T

�

. . . SEQ
� T

T

�

≥ 1 branches

FIGURE 2. Symbolic specification of the combinatorial class S of Catalan–
Stanley trees. Nodes represented by � are marked by the variable t, all other
nodes are marked by z.

Proof. By using the symbolic method [5, Chapter I], the symbolic representation of S given
in Figure 2 translates into the functional equation

S(z, t) = z +
z t

1−T2

1− t
1−T2

,

which simplifies to the equation given in (2).
In order to enumerate Catalan–Stanley trees with respect to their size, we consider S(z, z),

which simplifies to z(T + 1) and thus proves the statement. �

We want to describe how to grow all Catalan–Stanley trees beginning from the tree that
has only one node, .

We consider the tree reduction ρ : S → S that operates on a given Catalan–Stanley tree
τ (or just the root) as follows:

Start from all nodes that are represented by t, i.e. the rightmost leaves in the branches
attached to the root: if the node is a child of the root, it is simply deleted. Otherwise we
delete all children of the grandparent of the node and mark the resulting leaf with t.
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7→ 7→ 7→

FIGURE 3. Illustration of the reduction operator ρ, � marks the rightmost
leaves in the branches attached to the root.

This tree reduction is illustrated in Figure 3. While the reduction ρ is certainly not injective
as there are several trees with the same reduction τ ∈ S , it is easy to construct a tree reducing
to some given τ ∈ S by basically inserting chains of length 2 before all rightmost leaves in
the branches attached to the root. This allows us to think of the operator ρ−1 mapping a
given tree (or some family of trees) to the respective set of preimages as a tree expansion
operator. In this context, we also want to define the age of a Catalan–Stanley tree.

Definition. Let τ ∈ S be a Catalan–Stanley tree. Then we define α(τ), the age of τ, to be
the number of expansions required to grow τ from the tree of size one, . In particular, we
want

α(τ) = r ⇐⇒ τ ∈ (ρ−1)r( ) and τ 6∈ (ρ−1)r−1( )
for r ∈ Z≥1, and we set α( ) = 0.

Before we delve into the analysis of the age of Catalan–Stanley trees, we need to be able to
translate the tree expansion given by ρ−1 into a suitable form so that we can actually use it
in our analysis. The following proposition shows that ρ−1 can be expressed in the language
of generating functions.

Proposition 2.2. Let F ⊆ S be a family of Catalan–Stanley trees with bivariate generating
function f (z, t), where t marks rightmost leaves in the branches attached to the root and z marks
all other nodes. Then the generating function of ρ−1(F ), the family of trees whose reduction is
in F , is given by

Φ( f (z, t)) =
1

1− t
f
�

z,
t

1− t
T 2
�

. (3)

Proof. From a combinatorial point of view it is obvious that the operator Φ has to be linear,
meaning that we can focus on determining all possible expansions of some tree represented
by the monomial zn tk, i.e. a tree where the root has k children (and thus k different rightmost
leaves in the branches attached to the root), and n other nodes.
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In order to expand such a tree represented by zn tk we begin by inserting a chain of length
two before every rightmost leaf in order to ensure that the distance to the root is still odd.
These newly inserted nodes can now be considered to be roots of some rooted plane trees,
meaning that we actually insert two arbitrary rooted plane trees before every node repre-
sented by t. This corresponds to a factor of tkT 2k.

In addition to this operation, we are also allowed to add new children to the root, i.e.
we can add sequences of nodes represented by t before or after every child of the root. As
observed above, the root has k children and thus there are k + 1 positions where such a
sequence can be attached. This corresponds to a factor of (1− t)−(k+1).

Finally, we observe that nodes that are represented by z are not expanded in any way,
meaning that zn remains as it is.

Putting everything together yields that

Φ(zn tk) =
1

1− t
zn
� tT 2

1− t

�k
,

which, by linearity of Φ, proves the statement. �

Corollary 2.3. The generating function S(z, t) satisfies the functional equation

Φ(S(z, t)) = S(z, t).

Proof. This follows immediately from the fact that the reduction operator ρ is surjective, as
discussed above. �

Actually, in order to carry out a thorough analysis of this growth process for Catalan–
Stanley trees we need to have more information on the iterated application of the expansion.
In particular, we need a precise characterization of the family of Catalan–Stanley trees that
can be grown from some given tree family by expanding it a fixed number of times.

Proposition 2.4. Let r ∈ Z≥0 be fixed and F ⊆ S be a family of Catalan–Stanley trees with
bivariate generating function f (z, t). Then the family of trees obtained by expanding the trees
in F r times is enumerated by the generating function

Φr( f (z, t)) =
1

1− t 1−T2r

1−T2

f
�

z,
tT 2r

1− t 1−T2r

1−T2

�

. (4)

Proof. By linearity, it is sufficient to determine the generating function for the family of trees
obtained by expanding some tree represented by zn tk. Consider the closely related multi-
plicative operator Ψ with

Ψ( f (z, t)) = f
�

z,
t

1− t
T 2
�

.

It is easy to see that we can write the r-fold application of Φ with the help of Ψ as

Φr( f (z, t)) = Ψ r( f (z, t))
r−1
∏

j=0

1
1−Ψ j(t)

.



6 B. HACKL AND H. PRODINGER

As Ψ is multiplicative, we have

Ψ r(zn tk) = Ψ r(z)nΨ r(t)k,

meaning that we only have to investigate the r-fold application of Ψ to z and to t.
We immediately see that Ψ r(z) = z, as Ψ maps z to z itself. For Ψ r(t), we can prove by

induction that the relation

Ψ r(t) =
tT 2r

1− t 1−T2r

1−T2

holds for r ≥ 0. Finally, observe that for j ≥ 1 we have

Ψ j(t) =
Ψ j−1(t)

1−Ψ j−1(t)
T 2, (5)

and thus

Ψ r(t) =
Ψ r−1(t)

1−Ψ r−1(t)
T 2 =

Ψ r−2(t)
(1−Ψ r−2(t))(1−Ψ r−1(t))

T 4 = · · ·=
tT 2r

∏r−1
j=0(1−Ψ j(t))

by iteratively using (5) in the numerator. With our explicit formula for Ψ r(t) from above this
yields

r−1
∏

j=0

(1−Ψ j(t)) = 1− t
1− T 2r

1− T 2

for r ≥ 1. Putting everything together we obtain

Φr(zn tk) =
1

1− t 1−T2r

1−T2

znΨ r(t)k,

which proves (4) by linearity of Φr . �

From this characterization we immediately obtain the generating functions for all the
classes of objects we will investigate in the following sections.

Corollary 2.5. Let r ∈ Z≥0. The generating function F≤r (z, t) enumerating Catalan–Stanley
trees of age less than or equal to r where t marks the rightmost leaves in the branches attached
to the root and z marks all other nodes is given by

F≤r (z, t) =
z

1− t 1−T2r

1−T2

. (6)

Proof. As we defined ρ( ) = we have ∈ ρ−1( ), which implies F≤r (z, t) is given by
Φr(z). �

Corollary 2.6. Let r ≥ 0. Then the generating function Gr(z, v) enumerating Catalan–Stanley
trees where z marks the tree size and v marks the size of the r-fold reduced tree, is given by

Gr(z, v) = Φr(S(zv, t v))|t=z =
1

1− z 1−T2r

1−T2

S
�

zv,
zT 2r

1− z 1−T2r

1−T2

v
�

. (7)
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Proof. Observe that the generating function S(zv, t v) enumerates Catalan–Stanley trees with
respect to the number of rightmost leaves in the branches attached to the root (marked by t),
the number of other nodes (marked by z), and the size of the tree (marked by v). Applying
the operator Φr to this generating function thus yields a generating function where v still
marks the size of the tree, t and z however enumerate the number of rightmost leaves in the
branches attached to the root and all other nodes of the r-fold expanded tree, respectively.
After setting t = z, we obtain a generating function where v marks the size of the original
tree and z the size of the r-fold expanded tree—which is equivalent to the formulation in the
corollary. �

3. THE AGE OF CATALAN–STANLEY TREES

In this section we want to give a proper analysis of the parameter α defined in the previous
section. Formally, we do this by considering the random variable Dn modeling the age of a
tree of size n, where all Catalan–Stanley trees of size n are equally likely.

Remark. It is noteworthy that in [8] it was shown that the well-known register function of
a binary tree can also be obtained as the number of times some reduction can be applied to
the binary tree until it degenerates. The age of a Catalan–Stanley tree can thus be seen as a
“register function”-type parameter as well.

First of all, we are interested in the minimum and maximum age a tree of size n can have.

Proposition 3.1. Let n ∈ Z≥2. Then the bounds

1≤ Dn ≤
�n

2

�

(8)

hold and are sharp, i.e. there are trees τ, τ′ ∈ S of size n ≥ 2 such that Dn(τ) = 1 and
Dn(τ′) = bn/2c hold. The only tree of size 1 is , and it satisfies D1( ) = 0.

Proof. Note that only , the tree of size 1 has age 0, therefore the lower bound is certainly
valid for trees of size n≥ 2. This lower bound is sharp, as the tree with n−1 children attached
to the root is a Catalan–Stanley tree and has age 1.

For the upper bound, first observe that given a tree of size n ≥ 3 the reduction ρ always
removes at least 2 nodes from the tree. If the tree is of size 2, then ρ only removes one node.
Given an arbitrary Catalan–Stanley tree τ of age r and size n, this means that

1= | |= |ρr(τ)| ≤ |τ| − 2 · (r − 1)− 1= n− 2r + 1,

where |τ| denotes the size of the tree τ. This yields r ≤ n/2, and as r is known to be an
integer we may take the floor of the number on the right-hand side of the inequality. This
proves that the upper bound in (8) is valid.

The upper bound is sharp because we can construct appropriate families of trees precisely
reaching the upper bound: for even n, the chain of size n is a Catalan–Stanley tree of age
n/2. For odd n = 2m+ 1 we consider the chain of size 2m and attach one node to the root
of it. The resulting tree is a Catalan–Stanley tree of age m= bn/2c, and thus proves that the
bound is sharp. �
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By investigating the generating functions obtained from Corollary 2.5 we can characterize
the limiting distribution of the age of Catalan–Stanley trees when the size n tends to∞.

Theorem 1. Consider n→∞. Then the age of a (uniformly random) Catalan–Stanley tree of
size n behaves according to a discrete limiting distribution where

P(Dn = r) =
�4(4r(3r − 1) + 1)

(4r + 2)2
−

4(4r+1(3r + 2) + 1)
(4r+1 + 2)2

�

−
�6 · 64r(2r3 − 5r2 + 4r − 1)− 6 · 16r(16r3 − 24r2 + 10r − 1) + 24 · 4r(2r3 − r2)

(4r + 2)4

−
6 · 64r+1(2r3 + r2)− 6 · 16r+1(16r3 + 24r2 + 10r + 1) + 24 · 4r+1(2r3 + 5r2 + 4r + 1)

(4r+1 + 2)4
�

n−1

+O
� r5

3r
n−2
�

(9)

for r ∈ Z≥1. Additionally, by setting

c0 =
∑

r≥1

4r+1(3r − 1) + 4
(4r + 2)2

= 2.7182536428679528526648361928219367344585435680344 . . . ,

c1 = −
∑

r≥1

6 · 64r(2r3 − 5r2 + 4r − 1)− 6 · 16r(16r3 − 24r2 + 10r − 1) + 24 · 4r(2r − 1)r2

(4r + 2)4

= −4.2220971510158840823821873477600478080816411210406 . . . ,

c2 =
∑

r≥1

(2r − 1)
4r+1(3r − 1) + 4
(4r + 2)2

− c2
0

= 0.91845604214374797357797147814019496503688953933967 . . . ,

c3 = −
∑

r≥1

(2r − 1)
(4r + 2)4

�

6 · 64r(2r3 − 5r2 + 4r − 1)− 6 · 16r(16r3 − 24r2 + 10r − 1)

+ 24 · 4r(2r − 1)r2
�

− 2c0c1

= −9.1621753200836274996912436568310268988536534594942 . . . ,

the expected age and the corresponding variance are given by the asymptotic expansions

EDn = c0 + c1n−1 +O(n−2), (10)

VDn = c2 + c3n−1 +O(n−2). (11)

Proof. For the sake of convenience we set F≤r (z) := F≤r (z, z), where F≤r (z, t) is given in (6).
This univariate generating function now enumerates Catalan–Stanley trees of age ≤ r with
respect to the tree size.
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We begin by observing that F≥r (z), the generating function enumerating Catalan–Stanley
trees of age ≥ r with respect to the tree size is given by

F≥r (z) = S(z, z)− F≤r−1(z) = z(1+ T )−
z

1− z 1−T2r−2

1−T2

= z(1+ T )
T 2r−1

1+ T 2r−1
, (12)

where the last equation follows after some elementary manipulations and by using (1).
Now let fn,r := [zn]F≥r (z) denote the number of Catalan–Stanley trees of size n and age

≥ r. As we consider all Catalan–Stanley trees of size n to be equally likely, we find

P(Dn = r) = P(Dn ≥ r)− P(Dn ≥ r + 1) =
fn,r − fn,r+1

Cn−2
.

We use singularity analysis (see [4] and [5, Chapter VI]) in order to obtain an asymptotic
expansion for fn,r . To do so, we consider z to be in some∆-domain at 1/4 (see [5, Definition
VI.1]). The task of expanding F≥r (z) for z → 1/4 now largely consists of handling the term

T2r−1

1+T2r−1 . Observe that we can write

T 2r−1

1+ T 2r−1
=

1
1+ T 1−2r

=
1

1+ 22r−1(1−
p

1− 4z )1−2r
,

=
1

(1+ 22r−1)
�

1+ 22r−1

1+22r−1

∑

j≥1

�2r+ j−2
j

�

(1− 4z) j/2
�

which results in

T 2r−1

1+ T 2r−1
=

2
4r + 2

−
2 · 4r(2r − 1)
(4r + 2)2

(1− 4z)1/2

+
2 · 4r (4r(r − 1)− 2r)(2r − 1)

(4r + 2)3
(1− 4z)

−
2 · 4r(16r(2r2 − 5r + 3)− 4r+2(r2 − r) + 8r2 + 4r)(2r − 1)

3(4r + 2)4
(1− 4z)3/2+O

� r4

3r
(1− 4z)2

�

.

Multiplying this expansion with the expansion of z(1+ T ) yields the expansion

F≥r (z) =
3

4(4r + 2)
−

4r(3r − 1) + 1
2(4r + 2)2

(1− 4z)1/2

+
16r(6r2 − 7r − 1)− 2 · 4r(6r2 − 5r + 7)− 12

4(4r + 2)3
(1− 4z)

−
64r(2r3 − 5r2 + r)− 2 · 16r(8r3 − 12r2 + 11r − 2) + 4r+1(2r3 − r2 − 3r)− 4

2(4r + 2)4
(1− 4z)3/2

+O
� r4

3r
(1− 4z)2

�

.

By means of singularity analysis we extract the nth coefficient and find
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fn,r =
4r(3r − 1) + 1
4
p
π (4r + 2)2

4nn−3/2

−3·64r (8r3−20r2+r+1)−3·16r (64r3−96r2+100r−19)+12·4r (8r3−4r2−15r)−60
32
p
π (4r+2)4 4nn−5/2 +O

�

r5

3r 4nn−7/2
�

.

Computing the difference fn,r − fn,r+1 and dividing by the Catalan number Cn−2 then yields
the expression for P(Dn = r) given in (9).

The expected value can then be computed with the help of the well-known formula

EDn =
∑

r≥1

P(Dn ≥ r),

which proves (10). Finally, the variance can be obtained from VDn = E(D2
n)− (EDn)2, where

E(D2
n) =

∑

r≥1

r2P(Dn = r) =
∑

r≥1

(2r − 1)P(Dn ≥ r),

which proves (11). �

In addition to the asymptotic expansions given in Theorem 1 we can also determine an
exact formula for the expected value EDn. The key tools in this context are Cauchy’s integral
formula as well as the substitution z = u

(1+u)2 .

Proposition 3.2. Let n ∈ Z≥2. The expected age of the Catalan–Stanley trees of size n is given
by

EDn =
1

Cn−2

∑

k≥1

(−1)k+1σodd
0 (k)

�

�

2n− 4− k
n− 3

�

+
�

2n− 4− k
n− 2

�

− 2
�

2n− 4− k
n− 1

�

�

, (13)

where σodd
0 (k) denotes the number of odd divisors of k.

Proof. We begin by explicitly extracting the coefficient [zn]F≥r (z). The expected value can
then be obtained by summation over r and division by Cn−2.

With the help of the substitution z = u
(1+u)2 we can bring F≥r (z) into the more suitable form

F≥r (z) =
(1+ 2u)u2r

(1+ u)3(u2r−1 + (1+ u)2r−1)
.

We extract the coefficient of zn now by means of Cauchy’s integral formula. Let γ be a small
contour winding around the origin once. Then we have

[zn]F≥r (z) =
1

2πi

∮

γ

F≥r (z)

zn+1
dz =

1
2πi

∮

γ̃

(1+ u)2n+2

un+1

(1+ 2u)u2r

(1+ u)3(u2r−1 + (1+ u)2r−1)
1− u
(1+ u)3

du

= [un−2r](1+ 2u)(1− u)(1+ u)2n−2r−3 1
1+ ( u

1+u)2r−1

= [un−2r](1+ u− 2u2)
∑

j≥1

(−1) j−1u(2r−1)( j−1)(1+ u)2n−4− j(2r−1)
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=
∑

j≥1

(−1) j−1

�

�

2n− 4− j(2r − 1)
n− 3

�

+
�

2n− 4− j(2r − 1)
n− 2

�

− 2
�

2n− 4− j(2r − 1)
n− 1

�

�

,

(14)

where γ̃, the integration contour of the second integral, is the transformation of γ under the
transformation z = u/(1+ u)2 and is also a small contour winding around the origin once.

Now consider the auxiliary sum

ϑ(k) :=
∑

j,r≥1
j(2r−1)=k

(−1) j−1.

It is easy to see by distinguishing between even and odd k that with the help of σodd
0 (k), ϑ(k)

can be written as ϑ(k) = (−1)k−1σodd
0 (k).

Summing the expression from (14) over r ≥ 1, simplifying the resulting double sum by
means of the auxiliary sum ϑ, and finally dividing by Cn−2 then proves (13). �

4. ANALYSIS OF ANCESTORS

In this section we focus on characterizing the effect of the (repeatedly applied) reduction
ρ on a random Catalan–Stanley tree of size n. We are particularly interested in studying the
size of the reduced tree. In the light of the fact that all Catalan–Stanley trees can be grown
from by means of the growth process induced by ρ, we can think of the rth reduction of
some tree τ as the rth ancestor of τ.

In order to formally conduct this analysis, we consider the random variable Xn,r modeling
the size of the rth ancestor some tree of size n, where all Catalan–Stanley trees of size n are
equally likely.

Similar to our approach in Proposition 3.1 we can determine precise bounds for Xn,r as
well.

Proposition 4.1. Let n ∈ Z≥2 and r ∈ Z≥1. Then the bounds

1≤ Xn,r ≤ n− 2(r − 1)− 1 (15)

hold for r ≤ bn/2c and are sharp, i.e. there are trees τ, τ′ ∈ S of size n≥ 2 such that Xn,r(τ) = 1
and Xn,r(τ′) = n− 2(r − 1)− 1. For r > bn/2c the variable Xn,r is deterministic with Xn,r = 1.

Proof. Assume that r ≤ bn/2c. The lower bound is obvious as trees cannot reduce further
than to , and as the first ancestor of the tree with n−1 children attached to the root already
is the lower bound is valid and sharp.

For the upper bound we follow the same argumentation as in the proof of Proposition 3.1
to arrive at

1≤ |ρr(τ)| ≤ |τ| − 2(r − 1)− 1= n− 2r + 1
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for some Catalan–Stanley tree of size n, which proves that the upper bound is valid. Any tree
of size n having the chain of length 2 as its (r − 1)th ancestor satisfies proves that the upper
bound is sharp. This proves (15).

In the case of r > bn/2c we observe that as the bn/2cth ancestor of any Catalan–Stanley
tree of size n already is certain to be by Proposition 3.1, the rth ancestor is as well. �

With the generating function Gr(z, v) enumerating Catalan–Stanley trees with respect to
their size (marked by n) and the size of their rth ancestor (marked by v) from Corollary 2.6
we can write the probability generating function of Xn,r as

EvXn,r =
1

Cn−2
[zn]Gr(z, v).

This allows us to extract parameters like the expected size of the rth ancestor and the corre-
sponding variance.

Theorem 2. Let r ∈ Z≥0 be fixed and consider n→∞. Then the expected value and the variance
of the random variable Xn,r modeling the size of the rth ancestor of a (uniformly random)
Catalan–Stanley tree of size n are given by the asymptotic expansions

EXn,r =
1
4r

n+
2 · 4r − 2r2 + r − 2

2 · 4r
+
(2r + 1)(2r − 1)(r − 3)r

2 · 4r+1
n−1 +O(n−3/2), (16)

VXn,r =
(2r + 1)(2r − 1)

16r
n2 −

p
π(4r(3r + 1)− 1)

3 · 16r
n3/2

+
18 · 4r r2 + 3 · 4r r − 38 · 4r + 36r2 − 42r + 38

18 · 16r
n

+
5
p
π (4r(3r + 1)− 1)

8 · 16r
n1/2 +O(1). (17)

Proof. The strategy behind this proof is to determine the first and second factorial moment
of Xn,r by extracting the coefficient of zn in the derivatives ∂ d

∂ vd Gr(z, v)|v=1 for d ∈ {1, 2} and
normalizing the result by dividing by Cn−2.

We begin with the expected value. With the help of SageMath [3] we find for z→ 1/4

∂

∂ v
Gr(z, v)|v=1 =

1
4r+2
(1− 4z)−1/2 +

3 · 4r − r
2 · 4r+1

−
2 · 4r − 2r2 + r + 2

4r+2
(1− 4z)1/2

−
9 · 4r + 2r3 − 3r2 − 5r

6 · 4r+1
(1− 4z) +O((1− 4z)3/2),

where the O-constant depends implicitly on r. Extracting the coefficient of zn and dividing
by Cn−2 yields the expansion given in (16).

Following the same approach for the second derivative yields the expansion

∂ 2

∂ v2
Gr(z, v)|v=1 =

1
2 · 4r+2

(1− 4z)−3/2 −
4r(3r + 1)− 1

3 · 16r+1
(1− 4z)−1



GROWING AND DESTROYING CATALAN–STANLEY TREES 13

+
4r(18r2 + 3r + 7)− 24r + 2

18 · 16r+1
(1− 4z)−1/2 +O(1),

such that after applying singularity analysis and division by Cn−2 we obtain the expansion

EX 2
n,r =

1
4r

n2 −
p
π (4r(3r + 1)− 1)

3 · 16r
n3/2 +

4r(18r2 + 3r − 20)− 24r + 2
18 · 16r

n

+
5
p
π (4r(3r + 1)− 1)

8 · 16r
n1/2 +O(1)

for the second factorial moment EX 2
n,r . Applying the well-known formula

VXn,r = EX 2
n,r +EXn,r − (EXn,r)

2

then leads to the asymptotic expansion for the variance given in (17) and thus proves the
statement. �

Besides the asymptotic expansion given in Theorem 2, we are also interested in finding
an exact formula for the expected value EXn,r . We can do so by means of Cauchy’s integral
formula.

Proposition 4.2. Let n, r ∈ Z≥1. Then the expected size of the rth ancestor of a random
Catalan–Stanley tree of size n is given by

EXn,r =
1

Cn−2

�

2n− 2r − 4
n− 2

�

+ 1. (18)

Proof. We rewrite the derivative g(z) := ∂
∂ v Gr(z, v)|v=1 into a more suitable form which makes

it easier to extract the coefficients. To do so, we use the substitution z = u/(1+ u)2 again,
allowing us to express the derivative as

g(z) =
u2r+2

(1− u)(1+ u)2r+3
+
(1+ 2u)u
(1+ u)3

.

Note that as T = u
1+u , the summand (1+2u)u

(1+u)3 actually represents z(1 + T ), implying that the
coefficient of zn in this summand is given by Cn−2. Now let γ be a small contour winding
around the origin once, so that with Cauchy’s integral formula we obtain

[zn]g(z) =
1

2πi

∮

γ

g(z)
zn+1

dz =
1

2πi

∮

γ̃

(1+ u)2n+2

un+1

u2r+2

(1− u)(1+ u)2r+3

1− u
(1+ u)3

du+ Cn−2

= [un−2r−2](1+ u)2n−2r−4 + Cn−2 =
�

2n− 2r − 4
n− 2r − 2

�

+ Cn−2,

where γ̃ is the image of γ under the transformation (and is still a small contour winding
around the origin once). Dividing by Cn−2 then proves (18). �
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