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Abstract

We consider plane trees whose vertices are given labels from the set {1, 2, . . . , k} in
such a way that the sum of the labels along any edge is at most k + 1; it turns out
that the enumeration of these trees leads to a generalization of the Catalan numbers.
We also provide bijections between this class of trees and (k + 1)-ary trees as well
as generalized Dyck paths whose step sizes are k (up) and 1 (down) respectively,
thereby extending some classic results.
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1 Introduction

It is a classic result that plane trees with n + 1 vertices and binary trees with
n (internal) vertices are enumerated by the Catalan number 1

n+1

(
2n

n

)

. Plane
trees are also known as ordered trees in the literature; the aforementioned
binary trees, on the other hand, are sometimes called full or complete binary
trees, since every internal vertex has exactly two children. If one considers
the internal vertices only, one obtains so-called pruned binary trees, see for
instance [9], whose internal vertices can either have two children, or only a left
child, or only a right child. The simple bijection between these two classes of
trees is known as the natural correspondence [14] or rotation correspondence

[9] (Figure 1). It goes back to Harary, Prins and Tutte [13], its description was
further simplified by de Bruijn and Morselt [6].

Fig. 1. The rotation correspondence.

In [12], a bijection was constructed between plane trees with n + 1 vertices,
labeled with two colors (black and white), such that the root is black, and no
two vertices that are connected by an edge may be black, and ternary trees
with n vertices.

It is thus a natural step to allow k colors, and construct a bijection between
a suitable subclass of plane trees labeled by k colors, and (k + 1)-ary trees.
We address this question in the present paper. It turns out that the “right”
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condition is to demand that the sum of the labels of any vertex and its parent
may never exceed k + 1, and that the root has to have color k. The aforemen-
tioned special case corresponds to white = 1, and black = 2. We will call such
a tree a k-plane tree:

Definition 1. A k-plane tree is a plane tree whose vertices are given labels
from the set {1, . . . , k} in such a way that the sum of the labels along any
edge is at most k + 1.

In the following section, we use generating functions to enumerate k-plane
trees; we even allow the root to have an arbitrary color i (instead of just k).
Then a bijection between k-plane trees and a class of lattice paths is presented.
The enumeration of these and many other families of lattice paths was treated
in [1]. For k = 1, our bijection reduces to the classic glove bijection [2,4,18]
between plane trees and Dyck paths.

Finally, we construct two different bijections between k-plane trees and (k+1)-
ary trees, one of which is based on the correspondence between k-plane trees
and lattice paths. For k = 1, both of them reduce to the aforementioned
rotation correspondence, but they differ for k ≥ 2.

2 Generating functions

Let Ti(z) be the generating function for k-plane trees whose root is labeled i

(1 ≤ i ≤ k); in view of the definition of k-plane trees, we obtain a system of
functional equations:

Ti(z) =
z

1 −
∑k+1−i

j=1 Tj(z)
for all i.

The easiest way to solve this system of equations is to use the substitution z =
v

(1+v)k+1 that is inspired by the Lagrange inversion formula [11,18] (compare

also [5,8]): it turns out that Ti(z) = v
(1+v)i . Indeed,

z

1 −
∑k+1−i

j=1
v

(1+v)j

=
z

1 − (1 − (1 + v)−k−1+i)
= z(1 + v)k+1−i =

v

(1 + v)i
.

Since the power series for T1, T2, . . . , Tk are uniquely determined by the func-
tional equations, this shows that Ti(z) has to be v

(1+v)i . Now we can extract
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the n-th coefficient of Ti by means of contour integration:

[zn]Ti(z) =
1

2πi

∮
v

zn+1(1 + v)i
dz

=
1

2πi

∮ (1 − kv)(1 + v)(k+1)(n+1)

vn+1(1 + v)k+2
·

v

(1 + v)i
dv

=
1

2πi

∮ (1 − kv)(1 + v)(k+1)n−i−1

vn
dv

= [vn−1](1 − kv)(1 + v)(k+1)n−i−1

=

(

(k + 1)n − i − 1

n − 1

)

− k

(

(k + 1)n − i − 1

n − 2

)

,

where the integrals are taken over suitably chosen contours around 0. Let us
state this as a formal theorem:

Theorem 1. The number of k-plane trees with n vertices whose root is given
the label i is precisely

(

(k + 1)n − i − 1

n − 1

)

− k

(

(k + 1)n − i − 1

n − 2

)

=
k − i + 1

kn − i + 1
·

(

(k + 1)n − i − 1

n − 1

)

.

In particular, the special case i = k yields

[zn]Tk(z) =
1

k(n − 1) + 1
·

(

(k + 1)(n − 1)

n − 1

)

,

i.e., one obtains a generalization of the Catalan numbers. It is well known that

1

k(n − 1) + 1
·

(

(k + 1)(n − 1)

n − 1

)

is also the number of (k+1)-ary trees with n−1 internal vertices or the number
of lattice paths comprising of n−1 upsteps of size k and k(n−1) downsteps of
size 1 that start at 0 and stay above the x-axis. In the following two sections,
we construct bijections between these objects and k-plane trees whose root
is labeled k. These bijections generalize the classic bijections between plane
trees and binary trees and between plane trees and Dyck paths.

Finally, it should also be mentioned that one obtains yet another generalization
of the Catalan numbers if one takes the sum over all i: since

T (z) =
k∑

i=1

Ti(z) = 1 −
z

T1(z)
= 1 − (1 + v)−k,

4



one obtains

[zn]T (z) =
1

2πi

∮ 1 − (1 + v)−k

zn+1
dz

=
1

2πi

∮ (1 − kv)(1 + v)(k+1)(n+1)

vn+1(1 + v)k+2
·
(

1 − (1 + v)−k
)

dv

=
1

2πi

∮ (1 − kv)((1 + v)k − 1)(1 + v)(k+1)(n−1)

vn+1
dv

= [vn](1 + v)(k+1)n−1 − [vn](1 + v)(k+1)(n−1)

− k[vn−1](1 + v)(k+1)n−1 + k[vn−1](1 + v)(k+1)(n−1)

=

(

(k + 1)n − 1

n

)

−

(

(k + 1)(n − 1)

n

)

− k

(

(k + 1)n − 1

n − 1

)

+ k

(

(k + 1)(n − 1)

n − 1

)

=
k

n

(

(k + 1)(n − 1)

n − 1

)

.

Hence we have the following theorem:

Theorem 2. The total number of all k-plane trees with n vertices is

k

n

(

(k + 1)(n − 1)

n − 1

)

=
1

n − 1

(

(k + 1)(n − 1)

n

)

.

Apparently, this generalization of the Catalan numbers does not appear very
often in the literature. Sloane’s Encyclopedia of Integer Sequences [17] provides
a few references in the case k = 2 (such as [10,16]), and the general case
appears in [3] (even in a slightly more general form), but it seems that there
are not many known enumeration problems that lead to these numbers for
general k.

3 Bijection between k-plane trees and generalized Dyck paths

Consider lattice paths that do not go below the x-axis and consist of n upsteps
of size k and kn downsteps of size 1. It is easy to show, for instance by means of
the cycle lemma of Dvoretzky and Motzkin [7], that the number of such lattice
paths that stay above the x-axis is exactly the generalized Catalan number

1
kn+1

(
(k+1)n

n

)

. Let us describe how such a lattice path can be constructed from
a k-plane tree whose root is labeled k.

One proceeds as in the classic glove bijection [2,4,18]: starting to the left of
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the root of a given tree T , we move around the tree, always moving away
from the root on the left hand side of an edge and towards the root on the
right hand side of an edge. Each of the edges that we encounter corresponds
to one upstep and k downsteps as follows: whenever we move along an edge
away from the root, and the terminal vertex of this edge has label j, then we
add j − 1 downsteps, followed by an upstep, to the lattice path. On the way
back, we add the remaining k − j + 1 downsteps to the lattice path when we
move along this edge. Figure 2 shows a few steps of this procedure in the case
k = 3; the complete lattice path that corresponds to the given tree is shown
in Figure 3.

3

1 1 1

3 2 2

3

1 1 1

3 2 2

3

1 1 1

3 2 2

3

1 1 1

3 2 2

Fig. 2. Bijection between k-plane trees and lattice paths.

Fig. 3. The complete lattice path.

Let us prove that this is indeed a bijection. In the following, ℓ(v) denotes the
label of a vertex v. First of all, note that we can assign a level in the lattice
path to every vertex of T : the level of the root is 0, and the level of a non-root
vertex v is k + 1 − ℓ(v) plus the level of its parent. Therefore, the levels are
strictly increasing as one moves away from the root, and since all children
of the root bear the label 1, their level is k. So we can conclude that every
non-root vertex has level ≥ k. When moving along an edge, one can never add
more than k−1 downsteps in the lattice path, and so one will never fall below
the x-axis when one is moving along a edge away from the root; note that this
is also true for edges that start at the root, since all such edges correspond
to 0 downsteps, followed by an upstep. When one is moving towards the root,
the corresponding part of the lattice path merely consists of downsteps that
end at a nonnegative level, and so the lattice path will also always stay above
the x-axis in this case.

The condition on the labels of a k-plane tree guarantees that the reconstruction
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is unique: suppose that we have reconstructed the tree from the lattice path
up to a certain point that corresponds to a vertex v whose label is ℓ(v) = j.
Any potential child of v has label ≤ k + 1 − j and will thus correspond to at
most k − j downsteps, followed by an upstep. Hence, if the following segment
of the lattice path begins with a sequence of i ≤ k − j downsteps, followed
by an upstep, we add a child w to v and assign the label i + 1 to it. Now we
continue the process from w, etc. If, on the other hand, we encounter k +1− j

or more downsteps, then we move towards the root from v, which corresponds
to exactly k + 1 − j downsteps. Then we continue from v’s parent.

If we wanted to reconstruct the 3-plane tree from the lattice path shown in
Figure 3, we would proceed as follows: the first upstep corresponds to the
leftmost child of the root, whose label must be 1. This is followed by two
downsteps, followed by an upstep. Hence we attach a vertex that is labeled
3. Now we encounter two downsteps again, but since it is impossible to add
another vertex labeled 3 by our restrictions, we have to move back towards
the root again. Then we are left with one downstep, followed by an upstep,
which corresponds to a vertex whose label is 2, etc.

Let us mention that the same bijection can also be applied to k-plane trees
whose root is not labeled k; in this case, the corresponding lattice paths have
the property that they always stay above the line y = j − k, where j is the
root’s label. Alternatively, one can think of lattice paths that start at (0, k−j)
(and also end on the line y = k − j) and stay above the x-axis. Altogether,
the bijection shows that the number of lattice paths consisting of n upsteps
of size k and kn downsteps of size 1 which start at (0, i) for some 0 ≤ i < k

and stay above the x-axis is exactly the generalized Catalan number that we
encountered in Theorem 2, namely k

n+1

(
(k+1)n

n

)

. Note also that one simply
obtains the classic glove bijection in the case that k = 1.

4 Bijections between k-plane trees and (k + 1)-ary trees

In this section we present two bijections between k-plane trees whose root is
labeled k and (k + 1)-ary trees. The first one is essentially based on the bijec-
tion presented in the previous section, the second one provides an interesting
alternative approach, even though it is more complicated to formulate.

There is a simple bijection between the generalized Dyck paths discussed in
the previous section and (k + 1)-ary trees that is (in essence) due to Kuich
[15]: split a path with n upsteps of size k and kn downsteps into segments that
consist of an upstep and all downsteps immediately following it. The lengths
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of these segments form a sequence a1, a2, . . . , an. Now construct a (k + 1)-ary
tree as follows: starting with k + 1 edges attached to the root, visit leaves in
preorder (depth first, from left to right, thereby moving around the tree as in
the glove bijection) and attach k +1 new leaves to the aith leaf visited at step
i, 1 ≤ i ≤ n − 1 (the last term of the sequence, which is uniquely determined
by the others, is ignored). The reverse procedure is immediate. Figure 4 shows
the construction of the tree corresponding to the path in Figure 3, whose
associated sequence is (3,3,6,4,2,6).

1 2 3

1 2 3

1 2 3 4

5

6

1 2 3 4

1 2

Fig. 4. Constructing a (k + 1)-ary tree from a lattice path.

Another approach that leads to the same bijection is based on  Lukasiewicz

codes, see [9]: moving around a (k + 1)-ary tree in counterclockwise direction
as before, record the outdegree of every vertex when it is visited for the first
time. This yields a sequence whose terms are k + 1 or 0. Subtracting 1 from
every element of the sequence, one obtains the sequence of step sizes of the
corresponding path. Again the inverse bijection is also simple.

Yet another essentially equivalent approach is to replace each big upstep of
size k by k + 1 small upsteps of size 1, followed by a downstep, to obtain a
Dyck path whose maximal runs of upsteps consist of exactly k+1 steps. Then
one can apply (a generalization of) the procedure described by de Bruijn and
Morselt [6].
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The composition of the bijection between generalized Dyck paths and (k +1)-
ary trees and the bijection described in the previous section clearly yields a
bijection between (k + 1)-ary trees and k-plane trees. However, it can also be
described directly, which is done in the following. We exhibit how a (k + 1)-
ary tree is constructed from a k-plane tree, the reverse step is immediate. As
before, we move around the given k-plane tree in counterclockwise direction.
This is done simultaneously for the resulting (k + 1)-ary tree, which emerges
on the way (at the beginning, it only consists of the root). Whenever we move
away from the root along an edge that leads to a vertex labeled ℓ, we move
ℓ leaves forward (in preorder) in the (k + 1)-ary tree and attach (k + 1) new
leaves to the leaf that we reach (at the beginning, this means that we add new
leaves to the root). On the other hand, when we move from a vertex labeled ℓ

towards the root in the k-plane tree, then we move k+1−ℓ leaves forward, but
without attaching new leaves at the end. Figure 5 shows the first few steps for
the example of Figure 2; note that the corresponding (k + 1)-ary tree evolves
in essentially the same way as in Figure 4.

3

1 1 1

3 2 2

1 3

1 1 1

3 2 2

1 2 3

3

1 1 1

3 2 2 1

3

1 1 1

3 2 2 1 2

3

1 1 1

3 2 2

1 2

3

1 1 1

3 2 2

1 2

3

Fig. 5. The first bijection between k-plane trees and (k + 1)-ary trees.

The condition that the root bears label k ensures that all its children are
labeled 1, which is necessary since there is only one leaf where new vertices
can be attached at the beginning (and every time one returns to the root).
In the general case that the root’s label is i, one can adjust the bijection by
starting with a collection of k +1− i roots. Then one ends up with a sequence
of k+1−i (k+1)-ary trees (possibly only consisting of the root). Alternatively,
one can regard this collection of k +1− i (k +1)-ary trees as a single tree with
the property that the root has outdegree k + 1 − i, while all other internal
vertices have outdegree k + 1. Note also that this agrees with the generating
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functions found in Section 2: the generating function for such trees is exactly

z ·

(

1

z
·

v

(1 + v)k

)k+1−i

=
v

(1 + v)k+1
· (1 + v)k+1−i =

v

(1 + v)i
.

Figure 6 shows an example of this construction in the case k = 3.

1

1 2 3 2

3 2 1 1 2

3

Fig. 6. The case of general root labels.

Let us now present the second bijection; for k = 1, it is identical to the
rotation correspondence, but it differs from the first bijection for k ≥ 2 as well
as from the bijection presented in [12]. First it is explained how a (k + 1)-ary
tree is constructed from a k-plane tree. The reverse process will follow almost
automatically.

From k-plane trees to (k + 1)-ary trees

We call a vertex v of a k-plane tree a left descendant of u if there is a sequence
of vertices u = u1, u2, . . . , ur = v such that uj+1 is the leftmost child of uj for
every j.

Let a k-plane tree T with n + 1 vertices be given; we construct a (k + 1)-ary
tree T ∗ with n internal vertices by associating a vertex v∗ with every non-root
vertex v of T . We will use the following definition: if the label of v’s parent
in T is j, then we call the j leftmost positions where a child can be attached
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to v∗ the α-positions, and the remaining k + 1 − j positions of attachment
the β-positions (Figure 7 shows an example in the case k = 5). It will become
clear from the construction that follows that the α-positions are reserved for
vertices associated to left descendants of v, while the β-positions are reserved
for v’s right sibling (if there is one) and the left descendants of this sibling.

2

3 v

v∗

︸ ︷︷ ︸ ︸ ︷︷ ︸

α-positions β-positions

Fig. 7. α-and β-positions (the latter are indicated by gray shades).

Let us now describe how the tree T ∗ is constructed: the leftmost child of the
root of T is associated with the root of T ∗. The remaining vertices of T are
traversed in a depth-first way, according to the following rules:

• If a vertex v is not a leftmost child and u is its left sibling, then v∗ is attached
to u∗ at the ℓ(v)-th position from the right (note that this is a β-position,
since the label ℓ(v) can at most be k + 1 − j if the label of the common
parent of u and v is j). The ℓ(v)− 1 positions to the right of v∗ will remain
unoccupied for the rest of the process. See Figure 8 for an example in the
case k = 3.

1

1 2u v

u∗

v∗

Fig. 8. Handling right siblings. Gray shades indicate β-positions.

• If a vertex v is a leftmost child, then consider the first ancestor of v that is
not a leftmost child; in other words, let u1, u2, . . . , ur = v be a sequence of
vertices such that uj+1 is the leftmost child of uj for every j and u1 is not a
leftmost child (and thus either the root of T or a right sibling of some other
vertex). Now we have to distinguish two subcases (however, they are quite
similar):
· Assume that u1 is the root of T ; in this case, let P be the set consisting

of the α-positions of all u∗

j , 2 ≤ j ≤ r − 1. Of all the positions in P ,
we consider those that follow the last position that is already occupied (if
any; otherwise, we just consider all of them), counting from top to bottom
and from right to left. The vertex v∗ = u∗

r is attached to the ℓ(ur)-th of
these positions, again counting from top to bottom and from right to left.
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Of course we have to make sure that this is actually always possible: if
r = 3, then there are ℓ(u1) = k positions, and there are indeed exactly k

possible labels for ℓ(u3) (since we must necessarily have ℓ(u2) = 1). Note
also that k = k + 1 − ℓ(u2).

Now we proceed inductively to show that there are always precisely
k + 1 − ℓ(ur−1) positions of attachment for u∗

r, which is also the number
of possible labels for ur: when u∗

r is attached, we lose ℓ(ur) possible posi-
tions of attachment (the position where u∗

r is attached, but also ℓ(ur)− 1
previously empty positions to the right and above it); on the other hand,
u∗

r has ℓ(ur−1) α-positions by definition, which are added. This gives us
exactly

k + 1 − ℓ(ur−1) − ℓ(ur) + ℓ(ur−1) = k + 1 − ℓ(ur)

possible positions for ur+1, as desired. Figure 9 shows several steps of this
procedure in the case k = 3; potential positions of attachment are marked
by a circle; β-positions are indicated by a gray mark. Dashed lines indicate
possible connections to other vertices.

3

1

2

1

3

u1

u2

u3

u4

u5

u∗
2

u∗
2

u∗
3

u∗
2

u∗
3

u∗
4

u∗
2

u∗
3

u∗
4

u∗
5

Step 1:

Step 2:

Step 3:

Step 4:

Fig. 9. Handling left descendants of the root. Gray shades indicate β-positions;
circles mark potential positions of attachment for the following vertex.

· If u1 is the right sibling of some vertex w and u0 is the common parent
of u1 and w, we proceed in a similar way: in this case, let P be the set
consisting of the β-positions of w∗ together with the α-positions of all u∗

j ,
1 ≤ j ≤ r− 1. Of all the positions in P , we consider those that follow the
last position that is already occupied, counting from top to bottom and
from right to left. Now the vertex u∗

r is attached to the ℓ(ur)-th of these
positions, as in the previous case.
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Again it is easy to show that there is exactly the right number of such
positions available: if r = 1, then w∗ can provide k + 1 − ℓ(u0) empty β-
positions; this is also exactly the number of possible labels for u1. When
u∗

r is attached, we lose ℓ(ur) possible positions and gain ℓ(ur−1), resulting
in k+1−ℓ(ur) positions, as in the first case. Figure 10 shows several steps
of this procedure in the case k = 3.

3

1

2

1

3

w

u0

u1

u2

u3

w∗

w∗

u∗
1

w∗

u∗
1

u∗
2

w∗

u∗
1

u∗
2

u∗
3

Step 1:

Step 2:

Step 3:

Step 4:

Fig. 10. Handling right siblings and their left descendants. Gray shades indicate
β-positions; circles mark potential positions of attachment for the following vertex.

Let us remark that the vertices do not necessarily have to be traversed depth-
first (breadth-first would be possible too, for instance), as long as all vertices
are processed after their parents and left siblings. However, the depth-first
algorithm seemed to be most canonical to us.

From (k + 1)-ary trees to k-plane trees

It is not difficult to reverse the process: once a vertex v in T has been recon-
structed, it is also possible to determine the possible positions of attachment
for its leftmost child (if v has any children). The first of these positions that
is occupied (counting from top to bottom and from right to left, as in the
construction described above) corresponds to the leftmost child (which allows
us to reconstruct the label of this child); if none of the positions is occupied,
then v has no children. The same applies to the potential right sibling of v:
the rightmost occupied β-position of v∗ corresponds to the right sibling of v.
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Consider, for instance, the situation in Figure 9: suppose that u2, u3 and u4

have already been reconstructed. This allows us to determine the possible
positions of attachment for a left child of u4. We see that the first of these
positions that is occupied (counting top-down and right-left) is the third posi-
tion; this shows that u4 has at least one child and that the leftmost child has
label 3.

Likewise, consider the situation in Figure 10: suppose that u0 and w have
already been reconstructed. We can thus determine the possible positions of
attachment for a right sibling of w: since the second of these positions is the
first one that is occupied, we know that there is a right sibling and that it has
label 2.

Figure 11 shows a complete 3-plane tree and the corresponding 4-ary tree. Let
us finally remark that one obtains the classic bijection between plane trees
and binary trees in the case that k = 1: in this case, all labels are 1, so there is
always precisely one possible position for each vertex. Vertices corresponding
to leftmost children are attached on the left hand side, vertices corresponding
to right siblings are attached on the right hand side.

Let us briefly describe how this construction can be extended to the case that
the root’s label is an arbitrary number between 1 and k. There are two reasons
why the root has to have label k in our construction:

• It makes the label of the root’s leftmost child (vertex u2 in Figure 11) unique,
which could otherwise not be reconstructed from the (k + 1)-ary tree.

• As a consequence of the fact that the root’s leftmost child has label 1, it is
ensured that the number of α-positions of the vertex associated to it (vertex
u∗

2 in Figure 11) is exactly the number of possible labels for its own leftmost
child (if there is one; in Figure 11, this is vertex u3).

Both conditions remain satisfied in the case that the root is labeled i if we
impose the additional restriction that the root’s leftmost child (let us denote
it by v) must get label k + 1 − i. Then it is clear that the first condition
(reconstructability of v’s label) holds, and we only have to check the second
condition: but this is also easy, since v∗ has exactly i α-positions under our
assumptions, which is also the number of possible labels for v’s leftmost child
(note that i = k + 1 − (k + 1 − i)). Hence our procedure can still be applied,
and it is also still uniquely reconstructable.

If the root’s leftmost child is not necessarily labeled k +1− i, one can proceed
as follows: find the root’s first child that is labeled k +1− i (from left to right,
if there is such a child), and denote it by v. Now we just consider that part
of the k-plane tree that is formed by the branch that corresponds to v and all
branches to the right of it. As described before, one can uniquely associate a
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3

1

2

1

3 2

1 2 3

1 1

1 1

2 3

1

u1

u2

u3

u4

u5 u6

u7 u8

u9

u10 u11

u12 u13

u14

u15

u16

u∗
2

u∗
3

u∗
4

u∗
5

u∗
6

u∗
7

u∗
8

u∗
9

u∗
10

u∗
11

u∗
12

u∗
13

u∗
14

u∗
15

u∗
16

Fig. 11. A complete example.

(k + 1)-ary tree to it. Now remove all these branches and continue with the
remaining tree.

All the root’s children must now have labels ≤ k − i, and so we may replace
the root’s label by i + 1 and repeat the process (find the root’s leftmost child
labeled k − i, etc.). This can be done k + 1 − i times, and the result is again
a sequence of k + 1− i (k + 1)-ary trees, which is what we also obtained from
the first bijection. Figure 12 shows an example in the case k = 3.

5 Conclusion

Our bijections extend the well-known bijections between plane trees and bi-
nary trees resp. plane trees and Dyck paths. While the generalized Catalan
numbers 1

k(n−1)+1

(
(k+1)(n−1)

n−1

)

(which enumerate k-plane trees whose root is la-
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1

1 2 1 3 2

2 1 1 1 2

2 3 1 2

3

1

2

2 1

2 1

1

3 2

1 1 2

2 3 1 2

Fig. 12. The bijection in the case that the root is not labeled k.

beled k) occur quite frequently in the literature, this does not seem to be the

case for the numbers k
n

(
(k+1)(n−1)

n−1

)

, which enumerate all k-plane trees. It would
be interesting to see other enumeration problems that lead to these numbers.

The class of k-plane trees, as defined in this paper, also provides some pos-
sibilities for further investigations: for instance, one could ask for bijections
between r-tuples of k-plane trees whose roots are labeled i1, i2, . . . , ir and r-
tuples of k-plane trees whose roots are labeled j1, j2, . . . , jr, provided that

i1 + i2 + · · · + ir = j1 + j2 + · · · + jr = s,

since both have generating function vr

(1+v)s . The correspondence between k-

plane trees with arbitrary root labels and tuples of (k + 1)-ary trees (see the

16



end of Section 4) clearly provides such a bijection, but it is not very direct.

Finally, one can certainly modify the definition of k-plane trees by impos-
ing other restrictions on pairs of labels along an edge. It is conceivable that
appropriate conditions will lead to interesting counting problems as well.
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