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ABSTRACT. For a two parameter family of Bernoulli numbers B, ,, the exponential gen-

erating function is derived by elementary methods.

1. INTRODUCTION

The following recursion for a two paramenter family of Bernoulli numbers is given in [3],

(p+1)?
p+2
In terms of exponential generating functions

tn
fp(t) = Z Bn,PE?

n>0

Bn+1,p - an,p - Bn,p+1 for n,p > 0.

recursion (1) translates into

0 = e~ LT g0,

The closed formula that follows is the main result of [2].

Theorem 1. Forp >0

1) = iBn,pﬁ _ (p+1)(t — Hy)e D) P <p) H,

n! (et — 1)ptl = \k) (e — 1)k+1”

where H,, is the harmonic numbers defined in [1]:

n

1
7j=1

We provide a shorter proof of this theorem using elementary methods.
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2. ProoF

For p = 0 we have
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=1

Therefore Equation (2) holds for p = 0.
Now, assume that it holds for some p. Then
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It follows that
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Therefore Equation (2) holds for all p > 0 and the elementary proof of Theorem 1 is
complete.
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