
On Redundant τ -Adic Expansions and
Non-adjacent Digit Sets

Roberto Maria Avanzi1,�, Clemens Heuberger2,��, and Helmut Prodinger3,���

1 Faculty of Mathematics and Horst Görtz Institute for IT Security
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Abstract. This paper studies τ -adic expansions of scalars, which are
important in the design of scalar multiplication algorithms on Koblitz
Curves, and are less understood than their binary counterparts.

At Crypto ’97 Solinas introduced the width-w τ -adic non-adjacent
form for use with Koblitz curves. It is an expansion of integers z =��

i=0 ziτ
i, where τ is a quadratic integer depending on the curve, such

that zi �= 0 implies zw+i−1 = . . . = zi+1 = 0, like the sliding window
binary recodings of integers. We show that the digit sets described by
Solinas, formed by elements of minimal norm in their residue classes, are
uniquely determined. However, unlike for binary representations, syntac-
tic constraints do not necessarily imply minimality of weight.

Digit sets that permit recoding of all inputs are characterized, thus
extending the line of research begun by Muir and Stinson at SAC 2003
to Koblitz Curves.

Two new useful digit sets are introduced: one set makes precompu-
tations easier, the second set is suitable for low-memory applications,
generalising an approach started by Avanzi, Ciet, and Sica at PKC 2004
and continued by several authors since. Results by Solinas, and by Blake,
Murty, and Xu are generalized.

Termination, optimality, and cryptographic applications are consid-
ered. We show how to perform a “windowed” scalar multiplication on
Koblitz curves without doing precomputations first, thus reducing mem-
ory storage dependent on the base point to just one point.
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1 Introduction

Elliptic curves (EC) [15,17] are now a well established cryptographic primitive.
The performance of an EC cryptosystem depends on the efficiency of the funda-
mental operation, the scalar multiplication, i.e. the computation of the multiple
sP of a point P by an integer s. Among all EC, Koblitz curves [16], defined by
the equation

Ea : y2 + xy = x3 + ax2 + 1 with a ∈ {0, 1} (1)

over the finite field F2n , permit particularly efficient implementation of scalar
multiplication. Key to their good performance is the Frobenius endomorphism
τ , i.e. the map induced on Ea(F2n) by the Frobenius automorphism of the field
extension F2n/F2, that maps field elements to their squares.

Set μ = (−1)1−a. It is known [24, Section 4.1] that τ permutes the points
P ∈ Ea(F2n), and (τ2 + 2)P = μτ(P ). Identify τ with a root of

τ2 − μτ + 2 = 0 . (2)

If we write an integer z as
∑�

i=0 ziτ
i, where the digits zi belong to a suitably

defined digit set D, then we can compute zP as
∑�

i=0 ziτ
i(P ) via a Horner

scheme. The resulting method [16,23,24] is called a “τ -and-add” method since it
replaces the doubling with a Frobenius operation in the classic double-and-add
scalar multiplication algorithm. Since a Frobenius operation is much faster than
a group doubling, scalar multiplication on Koblitz curves is a very fast operation.

The elements dP for all d ∈ D are computed before the Horner scheme.
Larger digit sets usually correspond to representations

∑�
i=0 ziτ

i with fewer
non-zero coefficients i.e. to Horner schemes with fewer group additions. Optimal
performance is attained upon balancing digit set size and number of non-zero
coefficients.

Solinas [23,24] considers the residue classes in Z[τ ] modulo τw which are
coprime to τ , and forms a digit set comprising the zero and an element of minimal
norm from each residue class coprime to τ . We prove (Theorem 2) that such
elements are unique, hence this digit set is uniquely determined. It has cardinality
1 + 2w−1. Solinas’ recoding enjoys the width-w non-adjacent property

zi �= 0 implies zw+i−1 = . . . = zi+1 = 0 , (3)

and is called the τ -adic width-w non-adjacent form (or τ -w-NAF for short).
Every integer admits a unique τ -w-NAF.

We call a digit set allowing to recode all integers satisfying property (3) a
(width-w) non-adjacent digit set, or w-NADS for short. Theorem 1 is a criterion
for establishing whether a given digit set is a w-NADS, which is very different in
substance from the criterion of Blake, Murty, and Xu [8]. The characterisation
of digit sets which allow recoding with a non-adjacency condition is a line of
research started by Muir and Stinson in [18] and continued, for example by
Heuberger and Prodinger in [11].
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Our criterion is applied to digit sets introduced and studied in §§ 2.3 and 2.4.
We can prove under which conditions the first set is a w-NADS (Theorem 3),
and give precise estimates of the length of the recoding (Theorem 4). The second
digit set corresponds, in a suitable sense, to “repeated point halvings” (cf. The-
orem 5) and is used to design a width-w scalar multiplication algorithm without
precomputations. Among the other results in Section 2 are the facts that the
τ -adic w-NAF as defined by Solinas is not optimal, and that it is not possible to
compute minimal expansions by a deterministic finite automaton. In Section 3
we discuss the relevance of our results for cryptographic applications and per-
formance. We conclude in Section 4. Due to space constraints, most proofs have
been omitted. They will be given in the extended version of the paper.

2 Digit Sets

Let μ ∈ {±1}, τ be a root of equation (2) and τ̄ the complex conjugate of τ .
Note that 2/τ = τ̄ = μ − τ = −μ(1 + τ2). We consider expansions to the base
of τ of integers in Z[τ ]. It is well known that Z[τ ], which is the ring of algebraic
integers of Q(

√
−7), is a unique factorization domain.

Definition 1. Let D be a (finite) subset of Z[τ ] containing 0 and w � 1 be an
integer. A D-expansion of z ∈ Z[τ ] is a sequence ε = (εj)j�0 ∈ DN0 such that

1. Only a finite number of the digits εj is nonzero.
2. value(ε) :=

∑
j�0 εjτ

j = z, i.e., ε is indeed an expansion of z.

The Hamming weight of ε is the number of nonzero digits εj. The length of ε
is defined as

length(ε) := 1 + max{j : εj �= 0} .

A D-expansion of z is a D-w-Non-Adjacent-Form (D-w-NAF) of z, if

3. Each block (εj+w−1, . . . , εj) of w consecutive digits contains at most one
nonzero digit εk, j � k � j + w − 1.

A {0, ±1}-2-NAF is also called a τ -NAF.
The set D is called a w-Non-Adjacent-Digit-Set (w-NADS), if each z ∈ Z[τ ]

has a D-w-NAF.

Typically, D will have cardinality 1 + 2w−1, but we do not require this in the
definition. One of our aims is to investigate which D are w-NADS, and we shall
usually restrict ourselves to digit sets formed by adjoining the 0 to a reduced
residue system modulo τw, which is defined as usual:

Definition 2. Let w � 1 a natural number. A reduced residue system D′ for
the number ring Z[τ ] modulo τw is a set of representatives for the congruence
classes of Z[τ ] modulo τw that are coprime to τ .

For a digit set D for Z[τ ] formed by 0 together with a reduced residue system,
Algorithm 1 either recodes an integer z ∈ Z[τ ] to the base of τ , or enters in a
infinite loop for some inputs when D is not a NADS.
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Algorithm 1. General windowed integer recoding

INPUT: An element z from Z[τ ], a natural number w � 1 and a reduced residue system D′ for the
number ring R modulo τw.

OUTPUT: A representation z =
��−1

j=0 zjτ
j of length � of the integer z with the property that if

zj �= 0 then zj+i = 0 for 1 � i < w.

1. j ← 0, u ← z

2. while u �= 0 do

3. if τ | u then

4. zj ← 0 [Output 0]
5. else

6. Let zj ∈ D′ s.t. zj ≡ z (mod τw) [Output zj ]
7. u ← u − zj , u ← u/τ , j ← j + 1
8. � ← j

9. return ({zj}�−1
j=0, �)

Example 1. A digit set obtained by adjoining the zero to a reduced residue
system is not necessarily a NADS. This fact has been observed in the binary
case in [18]. If we take w = 1 and the digit set {0, 1 − τ} (here the reduced
residue set modulo τ = τ1 comprises the single element 1 − τ) we see that the
element 1 has an expansion (1 − τ) + (1 − τ)τ + (1 − τ)τ2 + (1 − τ)τ3 + · · · .
Algorithm 1 does not terminate in this case.

2.1 Algorithmic Characterization

As already mentioned, one aim of this paper is to investigate which digit sets
D are in fact w-NADS. For concrete D and w, this question can be decided
algorithmically:

Theorem 1. Let D be a finite subset of Z[τ ] containing 0 and w � 1 be an
integer. Let

M :=

⌊
max{N(d) : d ∈ D}

(2w/2 − 1)2

⌋

,

where N(z) denotes the norm of z, i.e., N(a + bτ) = (a + bτ)(a + bτ̄) = a2 +
μab + 2b2 for a, b ∈ Z.

Consider the directed graph G = (V, A) defined by its set of vertices

V := {0} ∪ {z ∈ Z[τ ] : N(z) � M , τ � z}

and set of arcs

A := {(y, z) ∈ V 2 : There exist d ∈ D \ {0}, and v � w s.t. z = τvy + d} .

Then D is a w-NADS iff the following conditions are both satisfied.
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Fig. 1. Directed Graph G for μ = −1, w = 1, D = {0, 1}. The arcs are labeled with
(v, d) as in the definition of the graph, i.e. y

(v,d)−→ z means that z = τvy + d.

1. The set D contains a reduced residue system modulo τw.
2. In G = (V, A), each vertex z ∈ V is reachable from 0.

If D is a w-NADS and D \ {0} is a reduced residue system modulo τw, then
each z ∈ Z[τ ] has a unique D-w-NAF.

We now make some remarks and discuss two well-known examples.

Remark 1. A number a + τb ∈ Z[τ ] is relatively prime to τ iff a is odd. This
follows from the fact that τ is a prime element in Z[τ ] and that τ divides a
rational integer iff the latter is even.

Example 2. Let w = 1 and D = {0, 1}. By Remark 1, there is only one residue
class prime to τ . In this case M = 5, so V = {0, ±1, ±1± τ}. The corresponding
directed graph in the case μ = −1 is shown in Figure 1. The case μ = 1 is similar.

We see that all 7 states are reachable from 0. Thus, {0, 1} is a 1-NADS. This
is equivalent to saying that τ is the base of a canonical number system in Z[τ ]
in the sense of [13], and is a particular case of results from [12].

Remark 2. Example 2 implies that there are exactly 2w residue classes modulo
τw; a complete residue system is:

{∑w−1
j=0 εjτ

j with εj ∈ {0, 1} for 0 � j <

w
}
. There are 2w−1 residue classes coprime to τw, a reduced residue system is:{

1 +
∑w−1

j=1 εjτ
j with εj ∈ {0, 1} for 1 � j < w

}
.

Example 3. Let w = 2 and D = {0, ±1}. Using Remark 2, it is easily seen that
{±1} is a reduced residue system modulo τ2. In this case, M = 1, the graph G
consists of the three states V = {0, ±1} only, and those are obviously reachable
from 0. Thus {0, ±1} is a 2-NADS. This has been proved by Solinas [23,24].
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Example 4. Let us consider the digit set D = {0} ∪ {±1, ±3,. . .,±(2w−1 − 1)}.
The odd digits form a reduced residue system modulo τw , since τw divides a
rational integer if and only if 2w divides it (note that τ and τ̄ are coprime
primes in Z[τ ]). However, this digit set is not a w-NADS for all w. For instance,
for w = 6, the number 1 − μτ has no D-6-NAF. Using Theorem 1, we can verify
that for w ∈ {2, 3, 4, 5, 7, 8, 9, 10}, this set D is a w-NADS.

2.2 Representatives of Minimal Norm

Theorem 2. Let τ , w � 2 be as above, and D a digit set consisting of 0 together
with one element of minimal norm from each odd residue class modulo τw.

The digit set D is uniquely determined. In other words, in each odd residue
class modulo τw there exists a unique element of minimal norm.

In [5,6] it has been shown that the τ -NAF has minimal weight among all the
τ -adic expansions with digit set {0, ±1}. Since the digit set D = {0, ±1 ± τ̄}
is also Solinas’ set for w = 3, in the same paper it is in fact shown that a D-
w-NAF with this digit set is a D-expansion of minimal weight. For the radix 2
the analogous result is known to be true for all positive w [1,19]. So one might
conjecture that the same holds for our choice of τ . But, the following example
shows that this is not the case:

Example 5. Consider μ = −1, w = 4, and the set D of minimal norm represen-
tatives modulo τw . We have D = {0, ±1, ±1 ± τ, ±(3 + τ)} and

value(1, 0, 0, 0, −1 − τ, 0, 0, 0, 1 − τ) = −9 = value(−3 − τ, 0, 0, −1) .

The first expansion is the D-w-NAF and has Hamming weight 3. The second
expansion does not satisfy the w-NAF condition, has Hamming weight 2 and is
even shorter than the first expansion.

Even worse, we exhibit chaotic behaviour in the following sense: for every integer
k > 0, a pair of numbers can be found which are congruent modulo τk, but
whose optimal D-expansions differ even at the least significant position. Thus
it is impossible to compute an optimal D-expansion of z by a deterministic
transducer automaton or an online algorithm.

Proposition 1. Let w = 4, and D = {0, ±1, ±1 ± τ, ±(3 − μτ)} (all signs are
independent) be the set of minimal norm representatives modulo τw. For every
nonnegative integer �, we define

z� := value
(

0, 0, 0, 0, μ − τ, (0, 0, 0, −3μ + τ)(�), 0, 0, 0, 0, 1 − μτ, 0, 0, 0, −1
)
,

z′� := value
(
−μ, 0, 0, 0, μ − τ, (0, 0, 0, −3μ + τ)(�), 0, 0, 0, 0, 1 − μτ, 0, 0, 0, −1

)
,

(4)

where (0, 0, 0, −3μ + τ)(�) means that this four-digit block is repeated � times.
Then z� ≡ z′� (mod τ4�+13). All D-optimal expansions of z� are given by

(
(0, 0, 0, 3 − μτ)(�2), 0, 0, μ − τ, (0, 0, 0, −3μ + τ)(�1), 0, 0, 0, 0, 1 − μτ, 0, 0, 0, −1

)
,
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where �1 and �2 are nonnegative integers summing up to �. There is only one
D-optimal expansion of z′�, it is given by

(
(0, 0, 0, −3 + μτ)(�+1), 0, 0, 0, 0, −3μ + τ, 0, 0, 1 + μτ

)
.

Note that the D-optimal expansion of z′� has Hamming weight � + 3, whereas
the D-w-NAF of z′� given in (4) has Hamming weight � + 4. The proof is based
on the search of shortest paths in an auxiliary automaton.

2.3 Syntactic Sufficient Conditions

The aim of this section is to prove sufficient conditions for families of sets D to be
a w-NADS at the level of digits of the τ -NAF. In contrast to Theorem 1, where
a decision can be made for any concrete set D, we will now focus on families of
such sets. Blake, Murty, and Xu [8] gave sufficient conditions based on the norm
of the numbers involved.

Proposition 2. Let w � 1 and ε, ε′ two τ-NAFs. Then value(ε) ≡ value(ε′)
(mod τw) if and only if

εj = ε′j for 0 � j � w − 2 and |εw−1| = |ε′w−1| . (5)

Definition 3. Let w be a positive integer and D be a subset of

{ 0 } ∪ { value(ε) : ε is a τ-NAF of length at most w with ε0 �= 0 }

consisting of 0 and a reduced residue system modulo τw. Then D is called a set
of short τ -NAF representatives for τw.

By Proposition 2, an example for a set of short τ -NAF representatives is

D = { 0 } ∪
{

value(ε) : ε is a τ -NAF of length at most w

with ε0 �= 0 and εw−1 ∈ {0, ε0}
}

.
(6)

All other sets of short τ -NAF representatives are obtained by changing the
signs of εw−1 without changing ε0 in some of the ε. It is easy to check that the
cardinality of D is indeed 1 + 2w−1.

The main result of this section is the following theorem, which states that in
almost all cases, a set of short τ -NAF representatives is a w-NADS:

Theorem 3. Let w be a positive integer and D a set of short τ-NAF represen-
tatives. Then D is a w-NADS iff it is not in the following table

w μ D Remark
3 −1 {1, −1, −τ2 + 1, −τ2 − 1} (−τ − 1)

(
1 − τ3

)
= −τ2 + 1

3 −1 {1, −1, −τ2 + 1, τ2 − 1} (−τ − 1)
(
1 − τ3

)
= −τ2 + 1

3 −1 {1, −1, τ2 + 1, τ2 − 1} (τ + 1)
(
1 − τ3

)
= τ2 − 1

3 1 {1, −1, −τ2 + 1, τ2 − 1} (−τ + 1)
(
1 − τ6

)
=

(
−τ2 + 1

)
τ3 + τ2 − 1

(the “Remark” column contains an example of an element which cannot be rep-
resented). In particular, if w � 4, then D is always a w-NADS.
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The following result is concerned with the lengths of recodings that make use of
the set of short τ -NAF representatives.

Theorem 4. Let w � 2 be a positive integer, D a set of short τ-NAF represen-
tatives, and ε a D-w-NAF of some z ∈ Z[τ ].

Then the length of ε can be bounded by

2 log2 |z| − w − 0.18829 < length(ε) < 2 log2 |z| + 7.08685 , if w � 4 , (7)
2 log2 |z| − 2.61267 < length(ε) < 2 log2 |z| + 5.01498 , if w = 3 , (8)
2 log2 |z| − 0.54627 < length(ε) < 2 log2 |z| + 3.51559 , if w = 2 . (9)

Note that (9) is Solinas’ [24] Equation (53).

2.4 Point Halving

For any given point P , point halving [14,22] consists in computing a point Q
such that 2Q = P . This operation applies to all elliptic curves over binary fields.
Its evaluation is (at least two times) faster than that of a doubling and a halve-
and-add scalar multiplication algorithm based on halving instead of doubling
can be devised. This method is not useful for Koblitz curves because halving is
slower than a Frobenius operation.

In [3] it is proposed to insert a halving in the “τ -and-add” method to speed
up Koblitz curve scalar multiplication. This approach brings a non-negligible
speedup and was refined in [5,6], where the insertion of a halving was interpreted
as a digit set extension as follows: Inserting a halving in the scalar multiplication
is equivalent to adding ±τ̄ to the digit set {0, ±1}. Note that, by Theorem 3, D =
{0, ±1, ±τ̄} is the only 3-NADS of short τ -NAF representatives. In particular
D′ = {±1, ±τ̄} is a reduced residue system modulo τ3.

The next two theorems state that more powers of τ̄ still produce reduced
residue systems D′, which in some cases give rise to w-NADS.

Theorem 5. Let w � 2. Then D′ := {±τ̄k : 0 � k < 2w−2} is a reduced residue
system modulo τw.

Theorem 6. Let D := {0}∪ {±τ̄k : 0 � k < 2w−2}. If w ∈ {2, 3, 4, 5, 6} then D
is a w-NADS. If w ∈ {7, 8, 9, 10, 11, 12} then D is not a w-NADS.

Sketch of the Proof of Theorem 6. For every pair (w, μ) with w � 6 the conditions
of Theorem 1 have been verified by heavy symbolic computations.

For 7 � w � 12 and both values of μ the graph G contains loops that are not
reachable from 0. In other words, there are elements in Z[τ ] that have periodic
expansions. For example, if w = 7 and μ = 1 we have

−9 + 34 τ =
τ̄27 − τ̄6τ7

1 − τ16 = τ̄27 − τ̄6τ7 + τ̄27τ16 − τ̄6τ23 + τ̄27τ32 − · · ·

and the number 371 − 20 τ has for all w with 8 � w � 12 (also with μ = 1)
periodic expansion (τ̄41 − τ̄5τ12)(1 − τ24)−1. ��
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2.5 Comparing the Digit Sets

So far, three digit sets have been studied: the minimal norm representatives,
short NAF representatives, and powers of τ̄ . It is a natural question to ask what
are the relations between these sets when they are w-NADS.

The minimal norm representatives are exactly the powers of τ̄ for w � 4. For
the same range of w, all digits of these digit sets have a τ -NAF of length at most
w, which implies that they are also digit sets of short NAF representatives.

If symmetry is required, i.e., if d is a digit, then −d must also be a digit, by
Theorem 3 there is only one w-NADS of short NAF representatives for w � 3:
it coincides with the digit sets of minimal norm representatives and powers of τ̄ .
For w = 4, however, there is a symmetric w-NADS of short NAF representatives
distinct from the other two digit sets. For w � 5, the three concepts are different:
the lengths of the τ -NAFs of the powers of τ̄ grow exponentially in w, and the
lengths of some minimal norm representatives exceed w slightly (at most by 2).

The table below summarizes the above considerations and provides further in-
formation.“MNR” stands for the minimal norm representatives digit set, whereas
“Pτ̄” stands for the powers of τ̄ . The last two rows show the maximum length
of the τ -NAFs of the digits.

w 2 3 4 5 6
MNR=Pτ̄ True True True False False

Max τ -NAF length MNR 1 3 4 6 8
Max τ -NAF length Pτ̄ 1 3 4 8 17

3 Applications

All digit sets seen so far can be used in a τ -and-add scalar multiplication, where
we first precompute dP for all d ∈ D \ {0} and then we evaluate the scheme∑

ziτ
i(P ); in fact, only a half of the precomputations usually suffice since in all

cases that we explicitly described the non-zero elements of the digit set come in
pairs of elements of opposite sign.

The digit set from § 2.3 simplifies the precomputation phase. The digit set
from § 2.4 allows us to perform precomputations very quickly or to get rid of
them completely. In the next two subsections we shall consider these facts in
detail. In § 3.3 we explain how to use digit sets which are not w-NADS when
they contain a subset that is a k-NADS for smaller k.

3.1 Using the Short-NAF Digit Set

Let us consider here the digit set D defined in (6). With respect to Solinas’ set it
has the advantage of being syntactically defined. If a computer has to work with
different curves, different scalar sizes and thus with different optimal choices for
the window size, the representatives in Solinas’ set must be recomputed – or
they must be retrieved from a set of tables. In some cases, the time to compute
representatives of minimal norm may have to be subsumed in the total scalar



294 R.M. Avanzi, C. Heuberger, and H. Prodinger

multiplication time. This is not the case with our set. This flexibility is also
particularly important for computer algebra systems.

The scalar is first recoded as a τ -NAF, and the elements of D are associated to
NAFs of length at most w with non-vanishing least significant digit, and thus to
certain odd integers in the interval [−aw, aw] where aw = 2w+1−2(−1)w

3 −1. These
integers can be used to index the elements in the precomputation table. We need
only to precompute the multiples of the base point by “positive” short NAFs
(i.e. with most significant digit equal to 1) – and the corresponding integers
are the odd integers in the interval [0, aw−1] together with the integers ≡ 1
(mod 4) in [aw−1 + 2, aw]. The indices in the table are then obtained by easy
compression. The precomputed elements for the scalar multiplication loop can
thus be retrieved upon direct reading the τ -NAF, of which we need only to
compute the least w significant places. If the least and the w-th least significant
digits of this segment of the τ -NAF are both non-zero and have different signs,
a carry is generated: Thus, the computation of the τ -NAF should be interleaved
with the parsing for short NAFs.

3.2 τ -Adic Scalar Multiplication with Repeated Halvings

Let w � 2 be an integer and D the digit set defined in § 2.4. Let P be a point on
an elliptic curve and Qj := τ j(2−jP ) for 0 � j < 2w−2 and R := Q2w−2−1. To
compute zP , we have to compute yR for y := τ̄2w−2−1z. Computing a D-w-NAF
of y, this can be done by using the points Qj , 0 � j < 2w−2 as precomputations.

Now, a point halving on an elliptic curve is much faster than a point doubling,
and a point addition is not faster than a doubling. Now, with, say, Solinas’ set
or the short τ -NAF representatives the precomputations always involve at least
one addition per digit set element. With our set we require a halving per digit
set element. Hence, our approach with the points Qj and halvings is already
faster than traditional ones.

But we can do even better, especially if normal bases are used to represent
the field F2n . Algorithm 2 computes zP using an expansion y =

∑�
i=0 yiτ

i of
the integer y := τ̄2w−2−1z where the digits yi belong to the digit set introduced
in Theorem 5, i.e. D := {0} ∪ {±τ̄k : 0 � k < 2w−2}.

To explain how it works we introduce some notation. Write yi = εiτ̄
ki with

εi ∈ {0, ±1}. We also define

y(k) =
∑

i : 0�i��, yi=±τ̄k

εiτ
i .

Now y =
∑2w−2−1

k=0 y(k)τ̄k and therefore

zP = τ̄−(2w−2−1)yP =

(
2w−2−1∑

m=0

y(m)τ̄m

)

τ̄−(2w−2−1)P

=
2w−2−1∑

m=0

y(m)τ̄m−(2w−2−1)P =
2w−2−1∑

m=0

(τ

2

)2w−2−1−m

(y(m))P .
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Algorithm 2. τ -adic Scalar Multiplication with Repeated Halvings

INPUT: A Koblitz curve Ea, a point P of odd order on it, and a scalar z.

OUTPUT: zP

1. y ← τ̄ 2w−2−1z

Write y =
��

i=0 yiτ
i where yi ∈ D := {0} ∪ ±{τ̄k : 0 � k < 2w−2}

Write yi = εiτ̄
ki with εi ∈ {0, ±1}

2. �k ← max
�
{−1} ∪ {i : yi = ±τ̄k for some k}

�

3. X ← 0
4. for k = 0 to 2w−2 − 1 do

5. if k > 0 then X ← τn−�kX , X ← 1
2X

6. for i = �k to 0 do

7. X ← τX

8. if yi = ±τ̄k then X ← X + εiP

9. return (X)

The last expression is evaluated by a Horner scheme in τ
2 , i.e. by repeated ap-

plications of τ and a point halving, interleaved with additions of y(0)P , y(1)P ,
etc. The elements y(k)P are computed by a τ -and-add loop as usual. To save
a memory register, instead of computing y(k)P and then adding it to a partial
evaluation of the Horner scheme, we apply τ to the negative of the length of
y(k) (which is 1 + �k) to the intermediate result X and perform the τ -and-add
loop to evaluate y(k)P starting with this X instead of a “clean” zero. In Step 5
there is an optimization already present in [3]: n is added to the exponent (since
n ≈ �k and τn acts like the identity on the curve) and the operation is also
partially fused to the subsequent τ

2 . At the end of the internal loop the relation

X =
∑k

m=0

(
τ
2

)k−m
y(m)P holds, thus proving the correctness.

Apart from the input, we only need to store the additional variable X and the
recoding of the scalar. The multiplication of z by τ̄2w−2−1 is an easy operation,
and the negative powers of τ can be easily eliminated by multiplying by a suitable
power of τn which operates trivially on the points of the curve. Reduction of
this scalar by (τn − 1)/(τ − 1) following [23,24] is also necessary.

An issue with Algorithm 2 is that the number of Frobenius operations may
increase exponentially with w, since the internal loop is repeated up to 2w−2

times. This is not a problem if a normal basis is used to represent the field, but
may induce a performance penalty with a polynomial basis. A similar problem
was faced by the authors of [20], and they solved it adapting an idea from [21].
The idea consists in keeping a copy R of the point P in normal basis repre-
sentation. Instead of computing y(k)P by a Horner scheme in τ , the summands
εiτ

iP are just added together. The power of the Frobenius is applied to R before
converting the result back to a polynomial basis representation and accumulat-
ing it. According to [10] a basis conversion takes about the same time as one
polynomial basis multiplication, and the two conversion routines require each a
matrix that occupies O(n2) bits of memory.
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Algorithm 3. Low-memory τ -adic Scalar Multiplication on Koblitz Curves with Re-
peated Halvings, for Fast Inversion

INPUT: P ∈ E(F2n), scalar z

OUTPUT: zP

1. y ← τ̄ 2w−2−1z

Write y =
��

i=0 yiτ
i where yi ∈ D := {0} ∪ ±{τ̄k : 0 � k < 2w−2}

Write yi = εiτ̄
ki with εi ∈ {0, ±1}

2. R ← normal basis(P )
3. Q ← 0
4. for k = 0 to 2w−2 − 1
5. if k > 0 then Q ← τQ, Q ← 1

2Q

6. for i = 0 to �

7. if yi = ±τ̄k then Q ← Q + εipolynomial basis(τ iR)
8. return Q

Algorithm 4. Low-memory τ -adic Scalar Multiplication on Koblitz Curves with Re-
peated Doublings, for Slow Inversion

INPUT: P ∈ E(F2n), scalar z

OUTPUT: zP

1. Write z =
��

i=0 ziτ
i where zi ∈ D := {0} ∪ ±{τ̄k : 0 � k < 2w−2}

Write zi = εiτ̄
ki with εi ∈ {0, ±1}

2. R ← normal basis(P ) [Keep in affine coordinates]
3. Q ← 0 [Q is in Lopez-Dahab coodinates]
4. for k = 2w−2 − 1 to 0
5. if k > 0 then Q ← τ−1Q, Q ← 2Q

�
τ−1 is three square roots

�

6. for i = 0 to �

7. if zi = ±τ̄k then Q ← Q + εipolynomial basis(τ iR) [Mixed coord.]
8. return Q [Convert to affine coordinates]

Algorithm 3 is a realisation of this approach. It is suited in the context where a
polynomial basis is used for a field and the cost of an inversion is not prohibitive.
The routines normal basis and polynomial basis convert the coordinates of the
points between polynomial and normal bases.

Algorithm 4 is the version for fields with a slow inversion (such as large fields).
It uses inversion-free coordinate systems and, since no halving formula is known
for such coordinates, a doubling is used instead of a halving. This is not a
problem, since using Projective or López-Dahab coordinates (see [9, § 15.1]) a
doubling followed by an application of τ−1 (which amounts to three square root
extractions) is about twice as fast as a mixed-coordinate addition preceded by a
basis conversion, hence the situation is advantageous as the previous one. This
also dispenses us with the need of using an auxiliary scalar y.
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Algorithm 5. Windowed Integer Recoding With Termination Guarantee

INPUT: An element z from Z[τ ], a natural number w � 1 and a set of reduced residue systems
D′

k ⊂ D′
k+1 ⊂ . . . ⊂ D′

w modulo τk, τk+1, . . ., τw respectively, (1 � k < w) where D′
k ∪ {0}

is a k-NADS.

OUTPUT: A representation z =
��−1

j=0 zjτ
j of length �.

1. j ← 0, u ← z, v ← w

2. while u �= 0 do

3. if τ | u then

4. zj ← 0
5. else

6. Let zj ∈ D′
v s.t. zj ≡ u (mod τv)

7. if ( |zj | � |u|(2v/2 − 1) And v > k ) then decrease v and retry:

8. v ← v − 1, go to Step 6

9. u ← u − zj , u ← u/τ , j ← j + 1
10. � ← j

11. return ({zj}�−1
j=0, �)

Although the digit set D introduced in Theorem 5 is not a w-NADS for all
w, in the next subsection we show how to save the situation.

3.3 Stepping Down Window Size

Let Dw be a family of digit sets, parametrized by an integer w, which are w-
NADS for some small values of w, but not in general, and such that Dv−1 ⊂ Dv

for all v. Then, Algorithm 1 may enter a loop for a few inputs. This can be
caused by the appearance of “large” digits towards the end of the main loop
of the recoding algorithm. Then the norm of the variable u gets too small in
comparison to the chosen digit, and |u| �

∣
∣
∣
u−zj

τw

∣
∣
∣ � |u|+|zj|

2w/2 . For most other in-
puts the algorithm terminated and delivers the expected low density. How can
we save it? One possibility is to decrease w for the rest of the computation,
so that the corresponding digit set is a NADS. We call this operation stepping
down. The resulting recoding may have a slightly higher weight, but the algo-
rithm is guaranteed to terminate. One possible implementation is presented as
Algorithm 5.

Solinas can prove that his τ -adic w-NAF terminates because his digits are
representants of minimal norm, and have norm bounded by 4

72w. The presence
of digits of non-minimal norm is a necessary but not sufficient condition for non-
termination. In fact, the digit sets from Example 4 and from § 2.4 are w-NADS
with some digits of norm larger than 2w.

Remark 3. The digit set from Example 4, the syntactically defined set of § 2.3
and the set of Theorem 5 all have the property that each set is contained in the
sets with larger w – hence Algorithm 5 can be used.
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Remark 4. Checking an absolute value (or a norm) in Algorithm 5, Step 7 is
expensive. Hence we need an alternative strategy. Let Mw be defined as M in
Theorem 1 for the digit set we are considering, with parameter w. Consider
an easy function that is bounded by the norm: for example, if z = a + bτ ,
λ(z) = max{�|a + μ

2 b|�2, 2�|μ
4 a + b|�2}. It is easy to check that λ(z) � N(z) and

that λ(z) = 0 iff z = 0. Therefore, if �log2(Mv)� � log2(λ(z))� we step down
to a new value of v with �log2(Mv)� < log2(λ(z))�. These checks are quickly
computed only by using the bit lengths of a and b and performing additions, sub-
tractions and bit shifts (but no expensive multiplication). The values �log2(Mv)�
are precomputed in an easy way.

Remark 5. In our experiments, the recodings done with the different digit sets
have similar length, the average density is 1/(w+1) (see also § 3.4), and stepping
down only marginally increases the weight. Thus, the new digit sets bring their
advantages with de facto no performance penalty.

3.4 A Performance Remark

Algorithms 2, 3 and 4 compute scalar multiplications by performing 2w−2 − 1
“faster” operation blocks and (roughly) n/(w + 1) “slower” operation blocks. In
Algorithm 2 (with normal bases) the two block types are given by a halving,
resp. an addition. In Algorithm 3 (resp. 4) these two block types are given by
a Frobenius operation plus a halving (resp. by an inverse Frobenius plus a dou-
bling), and by a basis conversion followed by an addition (for both algorithms).
In all cases we can see that computing the first block takes α times the time for
the second block, where α � 1/2.

We now determine asymptotically optimal values for w in these algorithms
in terms of n, where n is assumed to be large. This will lead to large values w,
such that the digit set from § 2.4 is probably not a w-NADS. We will therefore
have to use Algorithm 5 (or a variant of it). For the sake of simplicity, we do
not decrease v step by step depending on the norm of |zj|, but we use v = w for
j < L and v = 6 for j � L, where the parameter L will be chosen below.

Let z be a random integer in Z[τ ] with |z| � |τ |n. Here “random” means
that for every positive integer m, every residue class modulo τm is equally likely.
Let y =

∑L−1
j=0 zjτ

j where the zj are calculated by Algorithm 5. Then y ≡ z

(mod τL) and |y| � |τ |2w−2−1+L−1(1 + |τ |−w)−1. Thus |(z − y)/τL| � |τ |n−L +
|τ |2w−2−2. The choice

L = n − 2w−2 + 2

implies that |(z − y)/τL| � 2|τ |n−L. The expected length of the D6-6-NAF of
(z − y)/τL is n − L + O(1). Here, D6 = {0} ∪ {±τ̄k : 0 � k < 16}. We conclude
that the expected Hamming weight of the expansion returned by Algorithm 5 is

L

w + 1
+

n − L

7
+ O(1) .

Here, we use the well-known fact that a v-NAF of length m has expected Ham-
ming weight m/(v + 1) + O(1).
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Algorithm 2 performs 2w−2 − 1 point halvings, the number of additions being
given by the Hamming weight of the expansion. With α as above, the total costs
of the curve operations (measured in additions) is

α2w−2 +
L

w + 1
+

n − L

7
+ O(1) = 2w−2

(

α +
1
7

)

+
n − 2w−2

w + 1
+ O(1) .

Balancing the two main terms gives

ŵ =
1

log 2
W

(
7 · 2

21α+10
7α+1 log 2

7α + 1
n

)

− 7α + 8
7α + 1

·

where W is the main branch of Lambert’s W function. Asymptotically, this is
ŵ = log2 n − log2 log2 n + 2 − log2

(
α + 1

7

)
+ O

(
log log n

log n

)
. Thus we choose

w =
⌊

log2 n − log2 log2 n + 2 − log2

(

α +
1
7

)⌋

and see that the expected number of curve additions asymptotically equals

n

log2 n

(

1 + c + O

(
log log n

log n

))

(10)

with 1
2 < c = 2−{log2 n−log2 log2 n+2−log2(α+ 1

7 )} � 1.
For Algorithms 3 and 4, the unit in the cost (10) is given by the cost of a

group addition and a base conversion – the latter being comparable to a field
multiplication. We thus have the following result:

Theorem 7. Algorithms 2, 3 and 4 are sublinear scalar multiplication algo-
rithms on Koblitz Curves with constant input-dependent memory consumption.

Note that here sublinear refers to the number of group operations, and “constant
memory consumption” refers to the number of registers required for temporary
variables – each one taking of course O(n) bits. Usual windowed methods with pre-
computations have, of course, similar time complexity but use storage for 2w−2−1
points [23,24] and thus O(n2w) = O(n2/ log n) bits of memory. Algorithms 3 and 4
need O(n2) bits of field-dependent (but not point-dependent) data for base con-
version (as in [21,20]) that can be stored statically (such as in ROM).

For the same values of w, our algorithms perform better than techniques
storing precomputations. The precomputation stage with Solinas’ digit set takes
one addition and some Frobenius operations per precomputation. Using the digit
set from § 2.4 these additions can be replaced with cheaper operations (halvings
or doublings depending on the coordinate system), whereas in Algorithms 3
and 4 the cost of the basis conversion associated to each addition in the main
loop is relatively small. In all cases, the increase in recoding weight is marginal.
A more precise performance evaluation (including small values of n and w) lies
beyond the scope of this paper; however, in [2] some simple operation counts
and comparisons with other methods can be found. The method in [7] is also
sublinear, but its applicability still has to be assessed – the authors warn that
the involved constants may be quite large. See [4] for another approach.
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4 Conclusions

The paper at hand presents several new results about τ -adic recodings.
Digit sets allowing a w-NAF to be computed for all inputs are characterised.

We study digit sets with interesting properties for Koblitz curves.
We prove that Solinas’ digit set, characterised by the property that the el-

ements have minimal norm, is uniquely determined. We show, by means of an
example, that the non adjacency property does not imply minimality of weight,
and enunciate a result implying that optimal expansions cannot be computed
by a deterministic finite automaton.

In § 2.3 we introduce a new digit set characterised by syntactic properties. Its
usage is described in § 3.1.

The digit set introduced in § 2.4 together with Algorithms 2, 3 and 4 permit to
perform a “windowed” τ -adic scalar multiplication without requiring storage for
precomputed points. This is potentially useful for implementation on restricted
devices. Our methods can perform better than previous methods that make use
of precomputations. Some operation counts (based on the performance of real-
world implementations of finite field arithmetic) comparing our algorithms with
other methods can be found in [2]. Better performance assessments are part of
future work.
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