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1. Introduction

Mikic presents in [2] two identities involving Catalan numbers and provides combina-
torial (bijective) proofs. Now, these days, when I hear “combinatorial identity”, I think
immediately about Zeilberger’s algorithm and hypergeometric series, and am curious,
what they say. This is exactly the aim of the present note. Zeilberger’s algorithm is
described in his lovely book A = B [3].

2. The first identity

Catalan numbers are written as Ck =
(
2k
k

)
1

k+1
. The first identity is:

f(n) =
n∑

k=0

(−1)k
(
n

k

)
Ck

(
2n− 2k

n− k

)
=

(
n

bn/2c

)2

.

We ask Zeilberger’s algorithm and get a recursion of second order:

−16(2n+ 1)(n− 1)2f(n− 2)− 4(2n2 − 1)f(n− 1) + f(n)(2n− 1)(n+ 1)2 = 0.

This is a bit surprising; of course, one could plug in the right hand side and prove the
formula by induction.

Let us write

Ck =

(
2k

k

)
−
(

2k

k + 1

)
and treat the two terms separately.

F (n) =
n∑

k=0

(−1)k
(
n

k

)(
2k

k

)(
2n− 2k

n− k

)
.

Now we get

F (n)n2 = −16(n− 1)2F (n− 2),

which can be iterated and leads to

F (2n) =

(
2n

n

)2

, F (2n+ 1) = 0.

Similarly, with

G(n) =
n∑

k=0

(−1)k
(
n

k

)(
2k

k + 1

)(
2n− 2k

n− k

)
G(n)(n+ 1)2 = 16n2G(n− 2)

1
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and

G(2n+ 1) = −
(

2n+ 1

n

)2

, G(2n) = 0.

So Zeilberger’s algorithm strikes again; we only have to combine the two results for
F (n) and G(n).

But even without any special packages on sums my (old version of) Maple gives me
for even n

F (n) =
Γ2
(
n+1
2

)
4n

πΓ2
(
n
2

+ 1
)

which is what it should be, using the duplication formula for the Gamma function.
Similarly, we get for odd n

G(n) = −
Γ2
(
n
2

+ 1
)
4n

πΓ2
(
n+3
2

) .

Now we switch to hypergeometric functions. Consider

Wk,l(a, b, c) := 3F2

[
a, b, c

1+a+b+k
2

, 2c+ l

∣∣∣1].
As we find in Chu’s paper [1], W0,0(a, b, c) can be evaluated by a classical formula of
Watson in terms of 8 Gamma functions. This paper contains recursions about how to
bring down Wk,l(a, b, c) to the instance that can be evaluated. Here is the example we
need; the notation of a Pochhammer symbol (x)n = x(x+ 1) . . . (x+ n− 1) is used.

W0,1(a, b, c) =
1∑

j=0

(−1)j
(a)j(b)j

(2c− 1)2j

(c)j(2c− 1)j

(1+a+b
2

)j(2c+ 1)j
W0,0(a+ j, b+ j, c+ j)

= W0,0(a, b, c)−
ab

(1 + a+ b)(2c+ 1)
W0,0(a+ 1, b+ 1, c+ 1).

The sum in question is this:

f(n) =

(
2n

n

)
3F2

[
−n, −n, 1

2

−n+ 1
2
, 2

∣∣∣1].
So we see that we need a = b = −n, c = 1

2
and

W0,1(−n,−n,
1

2
) = W0,0(−n,−n,

1

2
) +

n2

2(2n− 1)
W0,0(−n+ 1,−n+ 1,

3

2
).

Evaluating the appearing W0,0 functions by Watson’s formula leads to(
2n

n

)
W0,1(−n,−n,

1

2
) =

(
2n

n

)
W0,0(−n,−n,

1

2
)

+

(
2n

n

)
n2

2(2n− 1)
W0,0(−n+ 1,−n+ 1,

3

2
)

= [[n even]]

(
n

n/2

)2

+ [[n odd]]

(
n

(n− 1)/2

)2

,

which is again the formula of interest. It is to be noted that modern computer algebra
systems “know” some of these formulæ, so that it is not necessary to type in Watson’s
formula.
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3. The second identity

The formula is
2n∑
k=0

(−1)k
(

2n

k

)
CkC2n−k = Cn

(
2n

n

)
.

So we set

f(n) :=
n∑

k=0

(−1)k
(
n

k

)
CkCn−k

and ask Zeilberger:

f(n) =
16(n− 1)2

n(n+ 2)
f(n− 2), f(0) = Cn.

So we get nonzero values only for even n, and the announced formula follows by itera-
tion/induction.

Now we move to hypergeometric functions. We need to evaluate

f(n) = Cn 3F2

[
−n, −n− 1, 1

2

−n+ 1
2
, 2

∣∣∣1].
This is a W1,1 function in the notation of Chu [1].

However, Maple can evaluate the function 3F2

[
−n, −n−1,

1
2

−n+
1
2
, 2

∣∣∣1]. It outputs an ugly

version, but after using the reflection formula and the duplication formula for the
Gamma function, it leads to 0 for odd n, and for 2n to

3F2

[
−2n, −2n− 1, 1

2

−2n+ 1
2
, 2

∣∣∣1] =
(2n+ 1)!(2n)!3

(4n)!n!3(n+ 1)!
.
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