ON SOME CONTINUED FRACTION EXPANSIONS OF THE
ROGERS-RAMANUJAN TYPE

NANCY 8. S. GU' AND HELMUT PRODINGER”

ABSTRACT. By guessing the relative quantities and proving the recursive relation, we
present some continued fraction expansions of the Rogers-Ramanujan type. Mean-
while, we also give some J-fraction expansions for the g-tangent and g¢-cotangent
functions.

1. INTRODUCTION

In [17], the second author studied the functions
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and gave some continued fraction expansions of the ¢-tangent and g-cotangent functions
for d = 0,1, 2 in the following forms:
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which are variants of Jackson’s [10]. Some special cases were considered in [5,15,16].

In [17], the second author also discussed a continued fraction identity of Ramanujan
and the celebrated Rogers-Ramanujan continued fraction expansion and companions.
Some related kinds of the continued fraction identities of Ramanujan were widely stud-
ied in the literature, see [1-4,7-9]. Inspired by the idea in [17], we find that the method
can be used for some Rogers-Ramanujan type functions, and we find nice continued
fraction expansions for them. For the Rogers-Ramanujan type identitites, Sills [20] gave
an annotated and cross-referenced version of Slater’s list [21] of Rogers-Ramanujan type
identities. When we refer to Slater’s list in this paper, we are referring to Sills’ version.

In Section 2, we focus on the continued fraction expansions in the following form:

z

z
ag+ ———
z
a4+ —

and discuss this kind of continued fraction expansions for zF'(z)/G(z) and its compan-
ion zG(z)/F(z) of the Rogers-Ramanujan type, as in (1.1) and (1.2).

In Section 3, we find that our method can be used to give an elementary proof for
a continued fraction identity due to Ramanujan which was proved by Andrews in [2].
Section 4 is devoted to expansions of the form:

22

a0+boz+ 5
z

al—l—blz—l——

and we study this kind (“J-fraction”) of continued fraction identities for 22 F(z)/G(z)
and 22G(z)/F(z) of the Rogers-Ramanujan type. We also give some expansions for the
g-tangent and g-cotangent functions. Recently, Shin and Zeng in [19] proved a similar
kind of the continued fraction expansions which were used to give a unified proof of
Josuat-Verges recent g-analogues of two identities due to Euler and Roselle.

As usual, we follow the notation and terminology in [6]. For |¢| < 1, the g-shifted
factorial is defined by

o

(@5 ¢)oo
a;q)oo = 1—a¢®) and (a;q), = ——22~, forn e C.
(a9) kl:[O( ) (a:9) (aq™; @)oo



ON SOME CONTINUED FRACTION EXPANSIONS OF THE ROGERS-RAMANUJAN TYPE 3

F(z) & G(z) Expansions | Theorems

PRV

F(2) =3 050" @ q)(n $Ontd | [(2)/G(z) | Theorem 2.1
o n(n 1)/2 4

G(z) = 2n>0 - )(n &) nt

F(z) = 3050 #Z)n 2F(2)/G(2) | Theorem 2.2
2n n2+2n

G(2) = Xonz0 Gramn 2G(2)/F(2)

F(2) = X050 gy 2F(2)/G(z) | Theorem 2.3
2n n2+4n

G(z) = Zn>0 ((]?;;T)n 2G(z)/F(z)

F(2) =3 050" q:qz(._zq)’f)" 2F(2)/G(z) | Theorem 2.4
2n n2+2n 2

G(z) = Zn>0 : (qz;q(z)fq Jn 2G(z)/F(z)

F(z) =30 fqz)% 2F(2)/G(z) | Theorem 2.5
2n 2n2+2n

OC) = Soon T “G(2)/F(2)

F(z) =350 f;?l);bn 2F(2)/G(2) | Theorem 2.6
2 2n +2n

O) = T i 2G(2)/F(2)

F(2) =350 (Zq g)% 2F(z)/G(z) | Theorem 2.7
2ngn +2n

Gz) = 2Lnzo (qqqmﬂ 2G(2)/F(2)

F(2) =30 (Zq g)% 2F(z)/G(z) | Theorem 2.8
2ngn +2n

O) = Son SG(:)/F(2)
P n +n

F(z) =350 @ Z)znﬂ 2F(2)/G(2) | Theorem 2.9
Zngn’n

Gl2) = Ty S SG(:)/F(2)
g™ +2n

F(z) = Zn>oq(T()qq) 2F(2)/G(z) | Theorem 2.10

G(2) = Z">0 = q(q (q q);g =

TABLE 1. Continued fraction expansions of zF(z)/G(z) and 2G(z)/F(z)

The main results in this paper are summarized in Table 1 and Table 2.

We don’t claim that neither the method nor all the results are original. However,
we tried to be systematic within the context of the Rogers-Ramanujan type identities
and we are confident that a fair share of our results are indeed new.
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F(z) & G(z) Expansions | Theorems

F(z) =350 (;Z;z 2?F(2)/G(z) | Theorem 4.1
ngnn

G(2) = 200 Zq) #G(2)/F(2)

F(2) =250 fq ‘é) 22G(z)/F(z) | Theorem 4.2
2ngn +2n

G(z) = Zn>0 (ZT

F(z) =350 ﬁ 2?F(2)/G(z) | Theorem 4.3
2ngn +2n

G(2) = 200 qu 2G(2)/F(2)

F(z) =350 ﬁ 2?F(2)/G(z) | Theorem 4.4
2ngn +4n

G(2) = Xnz0 Trgn 2G(2)/F(2)

F(z) =350 %q)'f)" 2?G(2)/F(z) | Theorem 4.5
2ngn +2n

Gl2) = Z”>0 : (¢ q()fq)

F(z) =350 f;?;; 22G(z)/F(z) | Theorem 4.6

G(2) = X nso % 22F(2)/G(z) | Theorem 4.13

F(z) =350 f;?;; 2?2G(z)/F(z) | Theorem 4.7
Zn 2n +2n

G(z) = Zn>0 (%T

F(z) =350 (an;];;n 2?2G(z)/F(z) | Theorem 4.8
2ngn +2n

G2) = Lnz0 G

F(z) = Xnso (qng;n 2*F(2)/G(z) | Theorem 4.9
2ngn +2n

G(2) = 2Xnz0 Tepo 2G(2)/F(2)

F(z) =350 (Z;qq;% 2?F(2)/G(z) | Theorem 4.10
ngntn

G(2) = Xonz0 "G

F(z) =350 m 2?F(2)/G(z) | Theorem 4.11

G(2) =2 50 (qzr;% 22G(2)/F(z) | Theorem 4.14

F(z) =350 (qzq)q%ﬂ 2?F(2)/G(z) | Theorem 4.12

G<Z) Zn>0 515)2n

F(2) =350 (qzzg%ﬂ 2?G(2)/F(z) | Theorem 4.15
n 2n

G<Z) Zn>0 (l] ((]1)2n

F(z) =350 @Z;L)% 2G(z)/F(z) | Theorem 4.16

G(2) = Z">0 (@:9)2n

TABLE 2. Continued fraction expansions of 2?F(2)/G(z) and 2°G(z)/F(z)
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2. zF(2)/G(z) AND 2G(2)/F(z)

For the continued fraction of the form

z
Z )
a+ ———
z
ay + —
we briefly state the approach as follows.
Let
2F(z) 2z z z B
G(z) Ny N z N z B
ap+ — «a
0 I 0 . .
a —_—
1 N,
and .
Ni — —Z.
S5
Then we have ,
Ni = a; —+ .
Niy
That is to say,
r; ZS;
— = Q; —+ —+1
S; Ti+1
Setting ;11 = s;, we have
2811 = Si—1 — a;S;, (21)

where the initial conditions are
s.1=G(z) and so= F(z).

Therefore, if we guess the number a;, and the power series s, and prove the recurrence
relation (2.1) by induction, then we prove the continued fraction identities.

Since the proof is a routine computation, we only show the proof for the first exam-
ple.

2.1. A.8/A.13 type. First, we consider the continued fraction expansions of the
Rogers-Ramanujan type functions in the identities A.8 and A.13 in Slater’s list which
are stated as follows.

Identity A.8 (Gauss-Lebesgue [13]):

(¢;9)n ()

i (=¢; Q)ng" ™2 (g% ¢
n=0

Identity A.13 (Slater [21]):

— ()" (Y | (0P
2 (¢:9)n (¢:9)oo - (0%

n=0
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In the following theorem, we give a more general case by introducing a parameter
d.

Theorem 2.1. Let

n n(n+1)/2(__,. n n(n—1)/2(__,.
2"q (=4 Dn+d 2"q (=4 Dntd
F(z):=) T . G2)=) T :
= @ q)n = @ q)n
For the continued fraction expansion
2F(2) _ z (22)
G(z) z .
ag+ ———
z
a; + —
we have
e (_qd+1;q)k . B qk(k+2d+1)/2
2k — g 2dT3)/2 2k+1 = (g™ @)rt

Y

_ ke 3 2R (gL ) (— g q)
~ @ q)n

2"q —q; q)ntk+d
o = 23 — Jntksd1
= 4 qn

n(n2h+1)/2(

Now we give the proof by induction.

Proof. According to the expansion (2.2), we know that F'(z) = so and G(2) = s_;.
Therefore, we have

1
S1 = — 1 —
1 Z(S 1 CLOSO)

_ 1! 3 A G ) 3 2" (g @)
z

= (43 0)n = (43 0)n
N AT Doy
= (¢ @)n
¥ g R (g5 )
= (¢ @)1

ann(n+l)/2<_Q§ Q)n+d+1
(¢ Dn

3
%
o

(S() — a181)

PV a1 > 2" (g Qnrans
2 (@ 0)n (1+q™") = (4:¢)n

S9 —

ST S I
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on—l1 n (n+1) /2(

_ Z e qg:il;wrd [(1 bt - (14 qn+d+1>}

n—1_n(n+1)/2+d+1 (

—4; Q)n+d

Nl
=2 (¢; @)n-1(1 4 g*t1)

n>1

n n(n+3) /2+d+2(

B Z 2"q —; @)ntd+1
d+1 :
n>0 1 + q " )

Next, we show for all n that the recurrence relation (2.1) holds. In this case, we need
to prove the following two relations:

[2"](Sop—1 — GorSor) = [2" " )Soks1, (2.3)
[2"] (S0 — Qopr150k41) = [2" "] Sopra. (2.4)
For the first relation (2.3):
n(n+2k—1)/2 .
[z"](s%_l . a2k52k) — qk(k—l)/2q ( )/ (_Q7 Q)n-i-k-i-d
(¢ Dn
(=™ D g2 ppasny C" 2= ) (=45 9)a
qk( +2d+3)/2 (@ Dn
B /2R =D /2 gy
(4 @)n—1
On the other hand,
[Zn—1]82k+1 _ qn(n+1)/2+n(k—1)+k(k—1)/2(_q; Q)n—i-k—i-d
(4 @)n—1
which is the same.
For the second relation (2.4):
[2"](S2k — Gokt1S2k41) = qk2+k(d+1)qn(n+2k+1)/2(_qk+d+l5 D=4 Q)d
(4 Dn
. k(k+2d+1)/2 k(k+1)/2qn(n+2k+1)/2(_q;Q)n+k+d+1
(—¢™5 Qs (¢ )n
_ qn(n+1)/2+k(n+k+d+2)+d+1( qk+d+27 q) (—q; q)d
(¢ @)n—1

On the other hand,

k42 0),1(—q; @)

)

gD/ 2 R 2) L (g

(¢ @)n—-1

[Zn_1]52k+2 =

which is the same. O
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2.2. A.16/A.20 type. The identities A.16 and A.20 in Slater’s list are stated as
follows.

Identity A.16 (Rogers [18]):

00 2
qn +2n 1

(50, (23 0°)e(—0% %)

n=0

Identity A.20 (Rogers [18]):

o¢] qn2 B 1

(@ (6,65 ¢°)(—0% %)

n=0
According to the recurrence relation (2.1), we have the following theorem.

Theorem 2.2. Let

n n2+2n

F(z):= Z ﬁ, G(z) := Z Z(/QE;T)Q

n>0
(1) For the continued fraction expansion

G(z) z

Qo

¥4
a1+—

we have
aze = (1) (L +¢™)g*" %, k>1, ao=1,

Qoppr = (—1)FY(1 4 gh+2) 2" —4k-1,

Szk:Z 2. z"q(

o (5 P In(=0% P Insor

n+k)?

n  n2+2n(k+1)
k41 3k2+4k+1z Zq

Sopt1 = (—1 q .
i = (1) 5 (@%@ )n(=0% ¢)nr2nta

(2) For the continued fraction expansion

2G(z) z
F(z) ’
B e
2

a1+—

we have
aze = (=1)F (L +¢*)g %, k>1, ag=1,

Aopr1 = (_l)k(l + q4k+2)q2k2_1‘
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n n2+2n(k+1)

2 k z q
So2k = (_1)kq3k 2 )
nzzo (4% 6*)n(—0% )2

n n?+2n(k+1)

_(k+1)2 Zq
s =q .
o ; (6% ¢*)n(— 0% 6% n2s1

We also find a variant of the above theorem.

Theorem 2.3. Let

n n? n n2+4n

2"'q < q
Fiz):=Y L Ge=Y 1
= (a4 = (4%4)n

(1) For the continued fraction expansion of zF(z)/G(z), we have
Qo) = (_1)k(1 + q4k‘—2)q2k22—4k+2’ k 2 1’ ag = 1’

1
A2k+1 = (—1)k_1(1 + q4k)q_2k2_2k_17 E>1, a=—-.

q
So = , kB >1,
5 (0% 0 )n(=0% ¢ Insonr
n n2+2n(k+1)
2 zq
Sopay = (—1)FHL R F2k41 .
At ; (4% @®)n(=6% ¢*)ns2n
(2) For the continued fraction expansion of zG(z)/F(z), we have
aze = (=1 L+ ") k21 ap =1,
ok 1
Ay = (D14 k2L @ =
n n2+2n(k+1)
k 3k? < q
s2t = (=1)q , k>,
- HZZO (0% ) (=% @) ny26-1
n (n+k+1)>2
Zq
S2k+1 = .
n=2 (4% ¢*)n (=% @* )2

n>0

2.3. A.34/A.36 type. The identities A.34 and A.36 in Slater’s list are stated as
follows.

Identity A.34 (Slater [21]): The analytic version of the second Gollnitz-
Gordon partition identity.
Z (—q; q%)ng™ 2 _ 1
(q2;q2)n (q37q4aq5;q8)oo

n=0
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Identity A.36 (Slater [21]): The analytic version of the first Gollnitz-
Gordon partition identity.

(%¢*)n (4,647 ¢%)

i (—¢; g™ 1
n=0

Theorem 2.4. Let
n, n2+42n

P =Y S ) > e

n>0

(1) For the continued fraction expansion of zF(z)/G(z), we have

e 2) k21
a2k‘:_( q7q)kq 7k217 a():la
mgmg—1
mj,
A2k+1 = — .
(= @%)ps1g" 1+

Z an(n+k)2(_q2k+l; q2)n(mk _ (1 _ q2n>q2k+lmk_1)

Sok = — ’
n>0 (q 1 d )n
2
Sok+1 = —q2k2+4k+1 Z 2" +2n(k+1)(—Q; qz)n-l-k-i-l
(4% @), ’

n>0

where

which satisfy the following recurrence relation:
mi = (1+ ¢y + ¢

(2) For the continued fraction expansion of zG(z2)/F(z), we have

wye = CLC ¢!
g2k (e Pen
ko Z ann2+2n(k+1)<_q2k+1; qz)n B an(n+k+1)2(_q; qz)n+k+1
S2k = 4 (q2 qg) ) S2k+1 = (q2 q2)
n>0 11/ n>0 14 )n

2.4. A.38/A.39 type. The identities A.38 and A.39 in Slater’s list are stated as
follows.

Identity A.38 (Slater [21]):

0 2n2+42n (qs V& qS'qS)w(qz q14.q16>oo

—~ (¢ Q)21 (43 9 '

n

Identity A.39 (Jackson [11]):

= (4.47,6%5 %) (6% % ¢'%)

“ (4 ¢)2n (¢ 4)oo

n=
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Theorem 2.5. Let

n ,2n? n,2n2+4+2n
2"q g
F(z) = L G =S
; (¢ @)an ; (43 )21
(1) For the continued fraction expansion of zF(z)/G(z), we have
e — — (1 — g™+ (1 — )22 o .
(1— ¢ 1)(1—g)(1— g1 —gk+2) "= 07 1 ¢

(1 _ q4k+3)(1 _ q2k+1)2(1 _ q2k+2)2
(1 _ q2)2q6k+2 ’

an2(n+k)2(1 — 2 PR ekl 22k q2n+4k+3)

Agk+1 = —

Sokr = 5

= (¢ @)2n41(0*" % ¢%)2i (1 = ¢°)

)

n ,2n? +4n(k+1)(1 q2)

2k2+6k+2 < q
S2k+1 = § .
! (63 @)2nr1 (@235 6P (1 — R4 (1 — g242)

(2) For the continued fraction expansion of zG(z2)/F(z), we have
1— q4k+l 1— q4k+3

Aok = — 57— W2k+1 = — 575
2k ’ 2k+2
q gt

o 2n +2n(2k+1)

2(n+k+1)2

2" g
) S2k4+1 = Z -

2k24-2k
Sor = ¢ E

>0 (4 D)2nt1(4*"3; ¢%) 2k >0 (4 D2n+1(4*"356%) 241
Theorem 2.6. Let
n 2n? n_ 2n%4+2n
< q <4
F(z) = , G(z) =)y —————
; (45 ¢)an ; (4 @)2n

(1) For the continued fraction expansion of zF(z)/G(z), we have

1 — g%=1)(1 — g2)22k2
ok = — 21 (Zk q4k—3)( q2)1c+ql e Ty F2 L a=1
(1 =gt — g% + g% 3)(1 — g +1 — @242 4 gth+l)

(1— q4k+1)(1 gkl 2kt q4k+1)2

Agk+1 = — (1 — q2)2q6k+2
o — 2R tk)? (1 — % 4 ¢22 — @2nt2htl _ (2n42k42 4 2nbdktly
n>0 (CI§ Q)2n+1(q2"+3; q2)2k_1(1 — q2) )
n 2n2+4n(k+1) 1— 2
2 2 q q
Sopy1 = —q2F HORE2 Z ( )

"o (65 @)ans1 (G273 2o (1 — g2FH1 — 2h+2 4 gak1y

(2) For the continued fraction expansion of zG(z2)/F(z), we have

1_q4k—1
a%:qT’ k>1, a=1, A2k+1 =

1— q4k+1

2k+2
q +

2n +2n(2k+1) n ,2(n+k+1)2

2k2+2k . 2"q
S2k4+1 =

n>0 @Qont1(¢2 35 ¢?)ok—1’ = (€5 @)2n+1(¢>35¢%) o
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2.5. A.79/A.96 type. The identities A.79 and A.96 in Slater’s list are stated as
follows.

Identity A.79 (Rogers [18]):

o0 n2

¢ (@%4% 0 ¢*)x (-0 %)
(4 @)2n (4% ¢%)o0
0

n=

Identity A.96 (Rogers [18]):
T (644%4"% 0" (6% 45 67
“ (¢ q)2n+1 (45 @)oo

n=

Theorem 2.7. Let

F(z):= Z Zflqn , G(z) = Z M

(1) For the continued fraction expansion of zF(z)/G(z), we have
2 4 2
L (1 _ q4k+1)q2k k—1 B _(1 _ q4k+3)(1 _ qzk +3k+1)2
gl = (1 — 2K°—k) (1 — g2k>+3k+1)” @2k+1 = PeEE]

n n 2 n 2
> q( +k) (1 _ qz +2k +3k+1)

Sok = E

"0 (@ D 2nt+1(@*35 42) 2k

Y

n n2+2n(k+1)

Sohp1 = ROk <4
§ ; :
o (@ Dani1 (7% 4o (1 — 243

(2) For the continued fraction expansion of zG(z2)/F(z), we have
1 — gttt
Qo = W, a1 = (1—¢q

4k+3>q2k2+k—1

o n 24on(k+1) n (n+k+1)32

3k2+3k Sopi1 = g
) +1 —
}: 2n+3; qz)% E : .

n>0 @)2n+1(q "0 (¢ @2n+1(4*" 35 @) o141

Theorem 2.8. Let

n n? n n?+2n
Zq Zq
F(z):= , G(z) = —_—
nzz% (43 @)2n nzz% (4: ¢)2n
(1) For the continued fraction expansion of zF(z)/G(z), we have
4k—1Y 2k>—3k+1 1 — gt
ag = —(1—¢""")q , k>1, ag=1, A2k-+1 :—m-

an(n+k)2

Sokr = 5

= (6 Do (% Pawr”

n n 24 on(k+1)
3k2+3k+1
S2k+1 =

n>0

(¢ @)2n+1(¢*" 35 ¢2) o
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(2) For the continued fraction expansion of zG(z)/F(z), we have

k—
— 1;141 E>1 —-1 R
ok = TR ap = 1, agr1 = ( q )q .

3k2+k§ :
n>0
S2k+1 = E

> q(n+k+1)
n>0

n n 2on(k+1)

b
@)on+1(¢*" 354 21

(¢ Q2ns1(4> 35 ¢

2.6. A.94/A.99 type. The identities A.94 and A.99 in Slater’s list are stated as
follows.

Identity A.94 (Rogers [18]):

= (%40 0wl "% )

“ (¢ @)2n+1 (45 @)oo

n=

Identity A.99 (Rogers [18]):

o~ T (9,4% 0% 065 4" 4%
= (¢;9)2n (¢ 4)oo
Theorem 2.9. Let
ann 2+n ann 24n
F(2) ;:Zﬁ, G(z) == @0
nso & d)2n+1 oo 45 4)2n

(1) For the continued fraction expansion of zF(z)/G(z), we have

_ 4k+3
- (1 ak+1\ 2k2—k - 1—q )
A2 = ( —q )q 3 A2k+1 = q2k2+5k+3 .
o n 24 n(2k+1
Sop = qk2+k§ : ( )
- 9
(@5 @)2n+1(4*3; 4%k

n>0
n ,m2+n(2k+3)

_3(k+1)2 <4
Sok4+1 = 4 E .
’ =5 (6 D201 (47" 42k

(2) For the continued fraction expansion of zG(z2)/F(z), we have

Ak 2k%—k

A2k = — (12q )q 2 7k217 = !
(1 — 2F2=F)(1 — g2k +3k+1)

(1 _ q4k+3)<1 _ q2k2+3k+1)2

@2k+1 = — 2Rk :

n,n +n(2k+1)(1 _ q2n+2k2+3k+1)

k2+kz <4

= (@D (0

)
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n n2+n(2k+3)

(k1) 2"q
Sok+1 = —(q .
' ; (@5 Dont1(g%"3; ¢ (1 — g?F*+3641)

2.7. A.25 type. The identity A.25 in Slater’s list is stated as follows.
Identity A.25 (Slater [21]):

i (—¢:a")nd™ _ (4%¢% 4% ¢%)oe(~¢: ¢°) 25)
— (¢ q)n (4% ¢%) oo

Recently, in [14], McLaughlin et al. found a partner to Equation (2.5).
An identity (McLaughlin et al. [14, Eq. (2.7)]):

i (—4: ¢)agd”+? (4% %) oo

(@% q")n (0% 40 (0, 6% ¢") oo

n=0

Theorem 2.10. Let
n, n?42n

F)= 3= O > s

For the continued fraction expansion of zF(z)/G(z), we have

(—q; *)e(1 + ¢*)
Aok = (q7 q2)qu2+2k ) k Z 17 ag = 17
(1+¢") (@ g™

(—q; q2)k+1

A2k+1 =

nn2+2n(k+1)(_ . 42 .
Sop = q2k2+2kz <4 (=4 ) nsk(q; 4%k

(
= (@)= PInar(—a: 6%

2" (—; ¢
S (P P)n(—0% Pngarsr

S2k+1 =

3. A CONTINUED FRACTION IDENTITY OF RAMANUJAN

In [2], Andrews gave a proof of the following “slightly tricky” continued fraction of
Ramanujan
2F(2) z
= , 3.1
a(s) 4 o

where
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Later, Bhargava and Adiga proved this identity in [4]. In what follows, applying our
method, we can give an elementary proof of this continued fraction identity (3.1).

Proof. In fact, this continued fraction (3.1) fits in the following form:

2F(2) _ z (3.2)
G(z) zq ' ’
o+ —————5
<q
ay + 3
<q
a9 + —
We define
2F(z) =z oz z B
G(z)  No 2q q
Qo + — Qo + - 5
Ny N 2q
ay N2
and
S;
Then we have
i+1
Ni =a; + !
Niy
That is to say,
Ty 2q" s
S - Ti+1
Setting r; 11 = s;, we have
27 s = sio1 — a;S;, (3.3)

where the initial conditions are
s.1=G(z) and so= F(z).

Therefore, if we give the number a; and the power series s, and prove the recurrence
relation (3.3) by induction, then we prove the continued fraction identities (3.2).

In this case, we have

ar=1+0b¢", k>1, ay=1.

n n2+n(k+1)

Sk:Z 4

5 (6 Dn (=04 Dk

Then we can prove the continued fraction identity (3.1) by induction. O
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4. 22F(2)/G(z) AND 22G(2)/F(2)

In this section, we discuss the following continued fraction expansions:

2F 22
F ) , (4.1)
G(z) 22
a,o—l—boz—l— )
z
ay+biz+ ——m—
z
as + byz + —
2 2
2G(z) z
F(z) 22
a,o—l—boz—i— 5
z
ar+biz+ ——m——
z
as + byz + —

Here, we take the continued fraction expansion (4.1) as an example to present the
method. For the expansion (4.1), let

22F(z) 2P 22 22
G(z) Ny 2 22
a0+boz+— ao+b0z+—2
M bzt -
aq 1% E
and .
Ni — i
S;
Then we have )
z
Ni = a; + biZ —+ .
Nip1
That is to say,
2
L7 i
— =a; + bz + ° it
S Tit1
Setting r; 11 = s;, we have
228i+1 = S;—1 — (ai + biZ)Si, (42)

where the initial conditions are
s.1=G(z) and sy= F(z).

Therefore, if we guess the numbers ag, by, and the power series s, and prove the
recurrence relation (4.2) by induction, then we prove the continued fraction identity
(4.1).

Theorem 4.1. Let
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(1) For the continued fraction expansion of 2>F(z)/G(z), we have

(¢ q2)4(1 —q)?

2% = T L = ) (1 = gy K2 b a=1
A2k+1 = (¢ )i ( — ¢y

(g% ?)E(1 — 2R +2)(1 — g)2qth+2
bop = _(qz; q ) (1-— q) (1+ — 2q2k+1 2q2k+3 + q4k+2 + q4k+3> ol h g
()L — PP = g LES ,

bop1 = (¢; q2)é(1 2k+1)2( + g3 — 2q2k+2 — Qg2+ gtk q4k+5)'
(g% ¢%)H(1 — ¢ +2)2(1 — ¢)%q
Sop = (—1)kg 3k 3 2 (4 ) (@3 ka1 — g4 ¢ — qn+2k+1)’
n>0 ( )n(q% q%)3

n+2k+2)

M 242n(2k+1) 2(1 — + ntl
Sl = (_1)kq4k2+7k+2z q ( Y )kg q 3.q2 q
n>0 (@ Dn(@ @) ks1(03 ¢

(2) For the continued fraction expansion of 2*G(z)/F(z), we have

ase = q~ ", g1 = —q 0
1+4q
bgk:1+q, ]{321, b(]:q, b2k+1:—T.
) ann 24n(4k+1)
Sop = k 4k +3k Z
n>0

n n2+n(4k+3)

24 Th+3 <4
Sokt1 = (— 1)k 1q4k +7
; (43 @)n

We point out that for the functions F(z) and G(z) in the above theorem, the
continued fraction expansions of zF'(z)/G(z) and 2G(z)/F(z) are provided in [17].

Theorem 4.2. Let

n,mn? n n2+2n
2"'q < q
F(2) :227, G(2) ;:Zi
= (4:9)n = (@9
For the continued fraction expansion of 2°G(z)/F(z), we have
ag, = q~*, gy = —q 70
I+¢q
bar. = q(1+ q), bokt1 = — 2

n n2+2n(2k+1)
k 4k2+5k z C_I
Sok =
n>0
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n2+4n(k+1)

_(_1\k—1,4k2+9k+5 2"q
32k+1—( 1) q Z

For the functions F'(z) and G(z) in the above theorem, the continued fraction ex-
pansion of zG(z)/F(z) are provided in [17].

Theorem 4.3. Let

n n2+2n

F) =2 (;;24%’ G) =2, ?qi}; q*)n

n>0 n>0

(1) For the continued fraction expansion of 2>F(z)/G(z), we have
(=¢% ¢M)i(1 + ™)
(=% ¢®)ig
(=¢% ¢")en (1 + 4™

A2k+1 =
+ (—q5; ¢®)2¢q5++2
by — (=¢% ¢*)e(1 — ¢™™) ps1 o4
R+ ) (L g2 T g
— (=¢% ¢%)in (1 — ¢
LT (g6 ¢®)2(1 4 ¢B+6) (1 4 ¢oh+2)gtk+1"
n TL2 n .
Sop = ¢ T2k Z g (=g )
(6% @ )n(=0% P )nsarn( =05 ¢*)r
n n2 n .
Soy1 = g T10k+2 Z 2D (g% %) .
(0% @ )n(=0% Pnrary2 (=% ¢k
(2) For the continued fraction expansion of 2*G(z)/F(z), we have
(=¢% i1 + ¢*)
2k = (—% )2 k=1, ao=1,
) kq
B Gl 0 F91 O
Zk+1 (—¢5; ¢°)2¢B++6
oy, = Cas )il —a™) k>1, bp=—1—
2 (—% ®)2(1 4 ¢3F+2)(1 + ¢SF—2)gtk-1 " = 7 07 14+ ¢2

(=% ¢®)i (1 — ¢'%%*3)

_qﬁ; q8)2(1 + q8k+6)(1 + q8k+2)q4k+3 ’

o1 = (

o q8k2+6k Z ann2+2n(2k+1)(_q2; qS)k
=1 (0% ¢°)n(=0% @)nsar( =% ¢*)n

n ’I’L2 n .
Sy = ¢ T14k+6 Z 2 (% ¢ .
(0% 0P )n(= 0% P )nrarya (=02 6%k
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Theorem 4.4. Let
n,n2+4n

2
Z"q" 2"q
F(z2):=) ———\) Gla)i=)

= (4%4"n = (a%4Y)n
(1) For the continued fraction expansion of 2*F(z)/G(z), we have

1 8k—2
_ (=dhdi(+g ) k>1,

2 (=% ¢*)}_ %2 2L w=1
(=% ) (1+ ¢%+2)
Q2k+1 = (—q% ¢®)2 542

by = TR =g
(=% ¢®)k-1(—¢% ¢*)rg* o ’
by = SO GG — g™ ]
(=% ®e(=a% ®prag™ 70— (1+4%)9q
2 n n n
_ (% 2y
52k = 4.8 Z 2 2 , k21,
(a5 =5 (0% ¢)n(=0% ¢*)nran
202k+1)2(_ 4. 8 n n2+2n(2k-+1)
q 0" ) 2"q
S2k4+1 = ( ) Z

(=% @k S5 (0% P)n(—0% P Ingants

(2) For the continued fraction expansion of 2*G(z)/F(z), we have
1 8k—2

(=" ¢")i(1 +q ) k>1,

a9 — = ag = 1,
(=% ¢®)7_1q%
I (1+¢%+2)
i (—q% ¢®) 7+
8 1 16k—4
bk = 8 8(2Q7Q)(8k 8k)4 T k=21 =g
(=% ¢®)7_ (14 ¢®F) (1 + ¢¥F—4)g*~
8.8 — % 0¥ (1 — okt 3
by = SO GO — ) 6
(=% ¢®)rs1(—q*; ¢®) g1 1+

o n +2n(2k+1)(_q8; qS)k_

Sok 8k +4k § :

n q ) )n+4k—l(_q4;q8)k7

n>0 ’
Sokp1 = 8k2+12k+4z 2" +4n(k+1)(—q4;q8)k .
el 6% ¢*)nsak+1 (=05 ¢
Theorem 4.5. Let
n . n2 .2 n n2+2n .2

2" (—q; 4% )n 2"q (=¢:¢°)n
F(z) = , G(z) = :

nzz% (4% ¢*)n n%% (4% ¢*)n

19
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For the continued fraction expansion of 2*G(z)/F(z), we have

_ (gd (=2
A2k = 731N 6k’ Aok+1 = —7 6k+5 "
(=4 ¢*)kq (—¢; ¢*)k419
—q; 4 1+ 4k+1_|_ 4k—1
b%:( gkl +4¢ q ),k:zl, bo = g1+ ),

(=3 ¢*)pg® 1
(_q3; q4)k(1 + q4k+1 + q4k+3)

boky1 = —
" (=& ¢*) 19?4+
o (_1>kq6k2+5k ann2+2n(2k+l)(_q; q2)n+2k
(=64 = (4% ¢%)n ’
- 2 n TL2 n
sy = 22 LS RES g ) (— g ) o
— 3 A 2. 2 :
(=% a)% & (4% ¢*)n
Theorem 4.6. Let
n ,2n2 n 2n2+42n
Zq Zq
F(z):=) LG =)
For the continued fraction expansion of 22G(z)/F(z), we have
gy = (LERA = (@56 (1)
(¢*; qs)quk ’ + (q7; qg)iq%%
by — (CORA—CTHA ) @
(@ )2 (1 — ¢FH3) (1 — g1y~ = 1— g
b (@) (1 -1+ )
2k+1 (7 ¢®)2(1 — ¢&F+3) (1 — g3k +T) g2
2 2
oy — (_1)kq8k +6k(q3; qS)k an2n +2n(4k+1)
(47 %)k (6 Dn(@® 5 6P ae
s = —1 k—1q8k2+14k+6(q7; q8>k an2n2+2n(4k+3) |
(4% ¢*) k1 (4 D20 (0" 4 arss
Theorem 4.7. Let
n ,2n? n 2n’42n
2"q 2"q
F(z):= : G(z) = —
nzzo (45 @)2n nzzo (43 @)2n

For the continued fraction expansion of 2°G(z)/F(z), we have

5. 8)2(] — k1
a2k:(q’Q)k(828qk >,k21, a():l,
(¢;0%)3q
(@) —g
2k+1 = (@ *)2 6

8k+3)
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5. 08)2(1 — ¥ —1)(1 2 2

(q ;Sq2)k( 834-1 )( +Sg—?’> ’ k: Z 1’ bo = 1 ’

(¢;¢®)3(1 — g®F+1)(1 — ¢3+3)

by = B (1— )1+ )
" (0% ¢%)2(1 — ¢+ (1 — ¢3++5)g2

bor =

( 1)k 8k2+6k n 2n%+2n(4k+1)

8
—1)*q ey =
o = (4: ) q

(4% ¢®)x = (6 Dan(@ P

s — _1)k—1q8k2+14k+6(q5; qS)k an2n +2n(4k+3)
2%h+1 = :
! (45 4%k (@ )an(@"5 ) k2
Theorem 4.8. Let
ann2 ann 242n
= (43 @)2n” G2, (43 Donsr
n>0 \D n n>0 \1 n
For the continued fraction expansion of z2*°G(z)/F(z), we have
1y = (ECNRA — ) s = (0% ¢%)i (1= ¢*)
(@%a*)ig™ (a7 )37
T. 8)2(1 — 16k+2
bor = 75— L q>8k(+3 ! 8k)—1 o k=L b= : 3
(¢% ¢*)i(1 )L =g l1—gq
by — _L04 ) (@*: ¢*)ws1 (1 — ¢'F10)
’ (475 ¢®)k(q™; ¢%)krr g
o (_1)kq8k2+7k(q3; qs>k Z ann2+2n(2k+l)
(475 6®)x = (4% ¢°)n(& 4P nrarsr’
n>0
— 2 n,n n
N (_1)k 1q8k +15k+7(q7;q8)k Z 2 2 44n(k+1)
+1 — .
(4% ¢®)k (0% @)n(¢ Pntanss
Theorem 4.9. Let
ann2 ann 242n
= (43 @)2n” G)i= 2, (43 @)2n
n>0 \D n n>0 ) n
(1) For the continued fraction expansion of 2*F(z)/G(z), we have
5. 8)2 8k—1
q’;q 1 q
I (Q7q8)k+1( 8’”3)
241 = (¢ )22
b — _(q5;q8)k(q5;q8)k_1(1 ™ o
2k — ) 8 Ak v by 0 — 1— g’
(¢ ®)e(¢; ®)r+1q q
_ (4 ¢%)isa (1 — ¢"°9)
bok1 =

(0% %)k(q%; @®) 1 (1 — @BFF1)gk+1
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2
(_l)quk +k(q; qS)k ann2+4nk

Sok = ,
(4% ¢®)r ; (@2 ¢®)n (@ 4% ntar

(_l)k 8k2+9k+2 n n242n(2k+1)

q (@® ¢®)r Z 2"q

S2k+1 = .
(43 ¢* )k = (0%6)n(4 ¢ nranso

(2) For the continued fraction expansion of 2*G(z)/F(z), we have

5. .,8\2 8k—1
q°;q°)(1 —q
Ao = ( )'k(82 Sk )> kZL a():la
(4;6%)7q
B ) <= G|
(4% q%)7g®F+o

8k+3)

b (6% ¢*)r(@% )k (1 = ¢'%2) p>1 o 4
2k = "B (- 8 4k—1 A
(43 6% (4 ¢* )14 q
by = —\GOG a1~ q'%*°)
(6% ¢*)k(@% ¢%) psrq™ 2
Sap = (=" ™ (g; ) 3 Zng Tk
(4% ¢*)n =5 (0% ¢*)n(@ ¢)nsar’
s — (_1)k—1q8k2+13k+5(q5; qS)k Z ann2+4n(k+1)
(43 ¢*)rs1 = (0% ¢*)n(g5 ¢*)ntaro
Theorem 4.10. Let
n n%+n n,n2+n
Zq Zq
F(z):= —, G(z) :=
= (4 Dant ; (45 ¢)an
For the continued fraction expansion of 2*°F(2)/G(z), we have
(¢% ¢V — g™ (0% Vi (1 — ™)

A2k = ) A2k+1 = —

(q3;q8)zq8k (q7; qS)iq8k+5

by = GO L =g 7
(@ @)@ ¢ eg* 7 I
(2% ¢®)is1(¢% (1 — g1+ 1)

aker = - (475 0®)k+1(q7; ¢8)pg**+3

n n?+n(4k+1)

o — (=D)Rg™ o (g% ¢*)s P
(@75 %) (05 )n(¢ @P)nrana”

_1)k—1 8k2+13k+5 n n?+n(4k+3)

q (@75 4% Z"q
2 (

S2k+1 = 2. 2

(4% 4%k S (@ )o@ P Inants’
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For the functions:

Pe)=Y 2 (4.3)

Glz) =Y G (4.4)

the second author in [17] studied the continued fraction expansions of the g-tangent
functions zF(z)/G(z) for the cases d = 0,1,2. Here, we consider the expansions of
2F(2)/G(z) for the cases d = 0 and d = 1 in the following two theorems, respectively.

Theorem 4.11. Let

2 z
F(z):= — G(z) := .
; (4 @)ansr ; (45 ¢)an
For the continued fraction expansion of 2*F(2)/G(z), we have
1y = (RO — @) dorr — (0% ¢%)i (1= ¢*)
(% ¢®)rg™ (a7 ¢®)gg®**
- RO
NCE ) (I—g*3) (1 —g%N)g "= 7 1—g¥
R0 )
1=
@21 = (1 = R
o — (_1)kq8k2+4k(q3; q8>k Z P
(4" ¢®) S (% )@ Pnania’
o — )k (T g8, Z n |
(4% ¢*)rs1 = (0 )o@ P Insarss
Theorem 4.12. Let
2 2
F(z):= S S G(z) = =%
; (45 @)anta ; (45 @)2n
For the continued fraction expansion of 2*F(2)/G(z), we have
o (q7: ¢*)2(1 — ¢¥+1) o (6% ¢)2,, (1 — ¢+9)
= : =
(@* ¢®)za™ (a7 ¢*)Ra®+?
by — O =) @
(0% @)1 (% ®)rg* 7 T 1—¢*
by = — L1k (@% (1 — ¢
(475 ¢®)k+1(d7; ¢®)rg ™2
(_1)kq8k2+3k(q3; qS)k 2ng" 24 4nk
sk = 2

(4" %) = (% )o@ Pnganss’
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_1)k—1 8k2+11k+3 n n?+2n(2k+1)

q (q" ¢%)k T 2"q

(4% ¢*)rs1 (0% In(¢ @P)nsants

S2k+1 =

We notice that the above theorem is the same as Theorem 4.10 when replacing
z — z/q there.

For the continued fraction expansion of 2?F(z)/G(z) for the functions (4.3) and
(4.4) in the case d = 2, we cannot find good expressions for by.

Finally, we point out that according to the following formula [12]

1 1
= - , (4.5)
C1z C1C%

1—cz—

1—

CoZ 030422

1—— 1—(CQ+03)Z—

we can make connections between Section 2 and Section 4. By considering the following
formula which is a variant of (4.5):

1 1

= 5 , (4.6)
z z
ag+ ————  Ag+ Byz + >
z z
a) + — Ay + Bz + 5
z z
a9 + — A2 + BQZ + —
where
a3 10 1 (314104042
Agp =ap || ——5—, k> 1, Ay = ay, Appp1=—— || ———,
i1 Qg5—4Qy; 5 Qg 0 Agi—2Qy,; 4
Agp—1 + Qapy1 1 A4g+1 + Qa3
Boy = Agpy——————, k> 1, By=—, DBopp1 = Ao ;
A4f—10ak A4k41 ai A 4fe4104k+204%4-3

and a_y = 1/ag, a_; = 1, we can get the continued fraction expansions of 22 F(2)/G(z)
(resp. 22G(2)/F(z)) in Section 4 from those of zF(2)/G(z) (resp. 2G(z)/F(z)) in Sec-
tion 2 as a corollary. However, we found a direct approach more attractive.

In what follows, according to the formula (4.6), we list some continued fraction
expansions which do not have good expressions for sy.

Theorem 4.13. Let

F(z):=>

2 2
an2n N q2n +2n

G(z) =

= (6 Q)20 = (@ D2n1
For the continued fraction expansion of 2*F(z)/G(z), we have
(7% qY)ila": ¢Yila" )1 — (A — ¢?)? 1
dok = — (2. AVE( 3. 182 (k1 s o k2L a= ’
(4:0")e(@® a5 (@% ¢*)i (™ q)ag 1—gq

(44" ) e (@ 051 (@5 6) 7 (1 — ¢*FFF)

A2k+1 = .
(@B ) T )R (1 — ¢2)2 (g g)agBR
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(% a)rla" a)ild" a5 ¢*)ea (1 — ¢*)?

(4: 4 E(a2% 4103 621 (6 ¢®)r(g™* 15 q) 3

% [qﬁ(l o q8k—1)(1 . q4k—1)2(1 o q4k)2 + (1 _ q8k+3)(1 _ q4k+1)2(1 . q4k+2)2]’

bop = —

q2
/{j>]_, b:— )
- 0 (1—¢q)*(1—¢3)
(¢: )21 (a% a1 (0% )i (0% )i

Bors: —
2 (3 g g a7 )k (07 )k (1 — )2 (g% q)3¢?

% [qﬁ(l _ q8k+3>(1 _ q4k+1) (1 q k+2) + (1 q8k+7)(1 _ q4k+3)2(1 _ q4k+4>2].
The continued fraction expansion of zF'(z)/G(z) for the functions F'(z) and G(z) in
the above theorem is given in Theorem 2.5.

Theorem 4.14. Let

F(z):zz .z : G<Z>::Z(;Z

= (@ @)anna =

For the continued fraction expansion of z2°G(z)/F(z), we have

o = _(613§ M i(qh g )2 (1 — B (1 — ¢?)? . 1
(@ qk(a% a)i(@® )i (@™ Y @ag® > 77— 1—¢
(Q§q4)i+1(q2' q )k+1(q q )k+1(1 _ q8k+5)

a2k+1 = .
T YA g )2(1 — @)% (g q)agth

bo = — (% a)rla" aDild" ®)i(d’ e (1 — ¢°)?
(0 4% (0% )i (0% 6)k(a™ 5 )30

)
% [qﬁ(l q8k 1)(1 q4k 1)2( q4k> ( 8k+3)(1 _ q4k+1)2(1 o q4k+2)2]’
1

q
SR e E Tk
(40410 01 (0% ) (@5 6
(2% a)i(a% a4 (@™ 6k (d7 ®)e(1 — ¢2)2(¢* 15 9)q
% [qﬁ(l o q8k+3)(1 _ q4k+1)2(1 o q4k+2)2 + (1 . q8k+7)(1 _ q4k+3)2(1 . q4k+4)2]‘
Theorem 4.15. Let

F(z):= Z Z:HL’ G(z) = Z (an

n>0 (Q7 q)2n+1 n>0 q; q)2n ‘

bokt1 =

For the continued fraction expansion of 2*G(z)/F(z), we have
ty = O R A — A - ]
(@ a4 (@® a)i(@® @)@ Y @ag®+ 7 = 7 1—q
o1 = (g; 4)§+1(q2; q4)é+1(q3§ q8)2+1(1 - q8k+5)
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% [qﬁ(l _ q8k—1>(1 _ q4k—1>2(1 . q4k>2 + (1 _ q8k+3)(1 _ q4k+1)2(1 o q4k+2)2]’

q3
S (e
byss — (45 4D i1(0% 4 (0% )i (6% €
(@B YT )i (07 )k (1 — )2 (@1 9)3¢
% [qﬁ(l o q8k+3)(1 o q4k+1) (1 q 4k+ 2) + (1 q8k+7)(1 o q4k+3)2(1 . q4k+4)2]‘

Theorem 4.16. Let

Fe) =3 2 =Y
Z) = s zZ) = .
n>0 (Q7 q)2n+l >0 (q, q)2n
For the continued fraction expansion of z2*°G(z)/F(z), we have
ay = PO — A - ]
(5 a3k (% aDi (@ @®)i(a™ s @)ag® 3 7 7 = 1—¢'

(Q§q4)i+1(q2§q )k+1(q q )k+1( 8k+5)

L B g VAT )20 — )P q)ag
(@ a")e (a5 a)e(d™ a®)e(d ¢®)e- (1 —¢*)?
2 (0% ) (0% (g% 9)240
)+

bor. = —
OO
% [qﬁ(l o q8k 1)(1 4k 1)2(1 q4k ( 8k+3)(1 _ q4k+1)2(1 . q4k+2)2]’
1

(1—q2(1—¢*)’
bypss = (5 ) 11(4% 41 (05 ) (675 6D
(¢% Mg a7 e (a7 6%)k(1 — ¢2)2 ("5 )3
% [qﬁ(l o q8k+3)(1 _ q4k+1)2(1 o q4k+2)2 + (1 . q8k+7)(1 _ q4k+3)2(1 . q4k+4)2]‘

]{321, b(]:—

The continued fraction expansions of the g-cotangent functions zG(z)/F(z) for the
functions F'(z) and G(z) in Theorem 4.14, Theorem 4.15, and Theorem 4.16 are given
in [17].
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