On Noncanonical Number Systems

Christiaan van de Woestijne Institut für Mathematik B Technische Universität Graz, Austria

Journées de Numération (Zö'tåg') in Graz 12–16 April 2007

Definition of number systems

A canonical number system is given by

- \bullet an algebraic integer α , the base, and
- a complete residue system \mathcal{D} of $\mathbb{Z}[\alpha]$ modulo α , usually taken as $\{0,\ldots,|\operatorname{Norm}(\alpha)|-1\}$, the digit set,

with the property that every $a \in \mathbb{Z}[\alpha]$ has a finite expansion

$$\sum_{i=0}^{\ell} d_i \alpha^i \qquad (d_i \in \mathcal{D}).$$

This definition represents a step in an ongoing chain of generalisations, and is the last one that has a recognisable "number" as a base.

Definition of number systems (2)

The following generalisation still has all the "structure" that we need to study number systems. We take:

- a finite free Z-module V;
- a \mathbb{Z} -linear map $\phi: V \to V$ with nonzero determinant;
- a finite subset \mathcal{D} of V that contains a complete residue system of V modulo its subgroup $\phi(V)$.

Note that V does not have a natural norm; we cannot yet talk about "large" or "small" elements of V. Later, we will choose a suitable norm.

Note also that we do not require $0 \in \mathcal{D}$.

Digits

If the digit set \mathcal{D} is exactly a complete residue system, we call it irredundant, otherwise it is redundant.

If \mathcal{D} is irredundant, then for each $v \in V$, we write $\operatorname{v} \operatorname{\mathsf{mod}}_{\mathcal{D}} \phi$, or simply $\operatorname{v} \operatorname{\mathsf{mod}} \phi$, for the unique digit d such that $v - d \in \phi(V)$.

We then define the transformation $T:V\to V$ by

$$T(v) = \phi^{-1}(v - (v \mod \phi)),$$

and the (ϕ, \mathcal{D}) -expansion of $v \in V$ by

$$\sum_{i>0} \phi^i(d_i) \quad \text{with} \quad d_i = T^i(v) \bmod \phi.$$

Periodic and finite expansions

We know: if ϕ is expanding, then for all $v \in V$, the (ϕ, \mathcal{D}) -expansion is eventually periodic.

When is $\sum_{i\geq 0}\phi^id_i$ a finite expansion?

Answer: when
$$\sum_{i\geq 0}\phi^id_i=\sum_{i=0}^{N-1}\phi^id_i$$
, so $\sum_{i=N}^{\infty}\phi^id_i=0$!

If 0 is a digit, this is simple: $d_i = 0$ for i = N, N + 1, ...

If 0 is not a digit, and ϕ is expanding, the only way is to have a zero period:

$$\sum_{i=0}^{\ell-1} \phi^i d_i = 0,$$

and this repeated indefinitely.

The zero period

Assume \mathcal{D} is irredundant and ϕ is expanding. Then we saw

$$d_i = T^i(v) \bmod \phi;$$

because expansions are unique, we see that the zero period is unique and is found as the (ϕ, \mathcal{D}) -expansion of 0.

Let's see what this means for the transformation T on V. The zero period can be represented as

$$0 \to T(0) = \phi^{-1} [0 - (0 \mod \phi)] \to T^{2}(0) \to \dots \to 0.$$

If any nonzero element v has a finite expansion, then the sequence $(T^n(v))_{n\geq 0}$ must reach 0, and return there periodically. In particular, 0 must be a purely periodic element under T.

Conversely: if 0 is not purely periodic, then for all $n \ge 0$, $T^n(0)$ does not have a finite expansion.

Definition of number systems (3)

Before I forget... let me complete the definition! Let ϕ be expanding. I call a triple (V, ϕ, \mathcal{D}) a number system if every $v \in V$ has a finite (ϕ, \mathcal{D}) -expansion, as defined above.

If \mathcal{D} is irredundant, the expansion is automatically unique.

It is also interesting to look at redundant digit sets:

- simply add all elements that do not have a finite expansion to the digit set (if you can't beat 'em, join 'em)! The digit set remains finite;
- add some syntactic or other conditions on the expansions to ensure uniqueness (Non-Adjacent Form, etcetera).

Example

Consider $V=\mathbb{Z}$, and let M be an odd integer, $|M|\geq 2$. Take ϕ_M to be multiplication by M. Consider the irredundant digit set

$$\mathcal{D}_M = \{-M+2, -M+4, \ldots, -1, 1, \ldots, M-2, M\}.$$

I claim that this digit set makes $(\mathbb{Z}, \phi_M, \mathcal{D}_M)$ into a number system.

We have here $T(a)=\frac{a-(a \bmod_{\mathcal{D}_M} M)}{M}$; it's easy to prove that whenever $|a|>\frac{M}{M-1}$, we have |T(a)|<|a|.

But 1 and -1 are digits, and 0 $\rightarrow \frac{0-M}{M} = -1 \rightarrow$ 0, so we have a finite zero-period.

We will call these digits the odd digits modulo M.

The spectral radius

Theorem. Assume that the spectral radius ρ of ϕ^{-1} is less than $\frac{1}{2}$.

Let $\varepsilon > 0$ be less than $\frac{1}{2} - \rho(\phi^{-1})$, and let $\|\cdot\|$ be a norm on V, such that the induced operator norm $\|\phi^{-1}\| < \rho(\phi^{-1}) + \varepsilon$.

Let $\mathcal D$ be an irredundant digit set with the property that, for all $d\in \mathcal D$ and all $v\in V$,

$$v \equiv d \pmod{\phi} \Rightarrow ||d|| \le ||v||.$$

We call \mathcal{D} a set of shortest digits for the norm $\|\cdot\|$.

Then (V, ϕ, \mathcal{D}) is a number system.

(This result was also proved by Germán & Kovács (2007).)

The spectral radius (2)

Proof. We have, for all $v \in V$,

$$||T(v)|| = ||\phi^{-1}(v - (v \mod \phi))|| < c \cdot 2||v|| < ||v||,$$

where $c = \rho(\phi^{-1}) + \varepsilon < \frac{1}{2}$, unless $v = v \mod \phi$. It follows that for all $v \in V$, the sequence $T^n(v)$ must reach 0. Q.E.D.

We note that it is possible to construct a positive definite inner product on V such that the induced norm has the required properties. This yields an effective algorithm to find a set of shortest digits for a given V and ϕ .

Ideal class groups

The following are equivalent:

- $\phi: V \to V$ is a \mathbb{Z} -endomorphism;
- ullet V is a $\mathbb{Z}[\phi]$ -module.

Lemma. Assume that the minimal polynomial and characteristic polynomial of ϕ are equal. Then V is isomorphic, as a $\mathbb{Z}[\phi]$ -module, to an ideal of $\mathbb{Z}[\phi]$.

Under this assumption, V is isomorphic to $\mathbb{Z}[X]/(P)$, for a polynomial P, iff the mentioned ideal is principal. Equivalently: if ϕ has matrix A for some basis of V, then

$$A = C^{-1}R_PC$$
 (R_P the companion matrix of P)

for some unimodular matrix C.

The Chinese Remainder Theorem (1)

From now on, we take all (V, ϕ) to be isomorphic, as a $\mathbb{Z}[\phi]$ -module, to $\mathbb{Z}[X]/(P)$, for some monic polynomial P.

Let P_1 and P_2 in $\mathbb{Z}[X]$ be coprime monic polynomials. The Chinese Remainder Theorem tells us that

$$\frac{\mathbb{Q}[X]}{(P_1 P_2)} \cong \frac{\mathbb{Q}[X]}{(P_1)} \times \frac{\mathbb{Q}[X]}{(P_2)};$$

but what about $\mathbb{Z}[X]$?

The sequence
$$0 \to \frac{\mathbb{Z}[X]}{(P_1 P_2)} \xrightarrow{\psi} \frac{\mathbb{Z}[X]}{(P_1)} \times \frac{\mathbb{Z}[X]}{(P_2)} \Rightarrow \frac{\mathbb{Z}[X]}{(P_1, P_2)} \to 0$$
 is exact.

Thus, ψ is an isomorphism iff $1 \in (P_1, P_2)$, iff $Res(P_1, P_2) = \pm 1$.

The Chinese Remainder Theorem (2)

What do we want with the CRT? Suppose:

- $\mathbb{Z}[X]/(P_1)$ is a number system with digit set \mathcal{D}_1 ;
- $\mathbb{Z}[X]/(P_2)$ is a number system with digit set \mathcal{D}_2 .

Let $v \in V = \mathbb{Z}[X]/(P_1P_2)$; we expand

$$v \mod P_1 = \sum_{i \ge 0} d_i^{(1)} X^i; \qquad v \mod P_2 = \sum_{i \ge 0} d_i^{(2)} X^i.$$

Suppose that for all $i \geq 0$ we can solve $\begin{cases} d_i \equiv d_i^{(1)} \pmod{P_1} \\ d_i \equiv d_i^{(2)} \pmod{P_2} \end{cases}$ for $d_i \in V$; then we have an

expansion $v = \sum_{i>0} d_i X^i$ modulo $P_1 P_2!$

CRT problems (1)

Problem 1: when is
$$\begin{cases} d \equiv d^{(1)} \pmod{P_1} \\ d \equiv d^{(2)} \pmod{P_2} \end{cases}$$
 solvable?

From the exact sequence, we see: iff

$$d^{(1)} \mod (P_1, P_2) = d^{(2)} \mod (P_1, P_2).$$

This is satisfied, e.g., if we have $Res(P_1, P_2) = \pm 1$.

But we can also select the digits in such a way that the above system is always satisfied!

Note, by the way, that $\mathbb{Z}[X]/(P_1, P_2)$ is a finite ring, as we assume P_1 and P_2 to be coprime.

Example

Let $P_1 = X - 5$ and $P_2 = X - 7$, and let's try the canonical digits on both sides.

Now suppose we have $d^{(1)} = 0$ and $d^{(2)} = 1$. Can we "merge"?

CRT: $d = \frac{1}{2}(X - 5) \pmod{(X - 5)(X - 7)}$. That's not integral!

And indeed, we have $|\operatorname{Res}(X-5,X-7)|=2$.

Better idea: let all digits be pairwise congruent modulo 2. As we saw above, we can take

$$\mathcal{D}_1 = \{-3, -1, 1, 3, 5\}$$
 and $\mathcal{D}_2 = \{-5, -3, -1, 1, 3, 5, 7\}.$

Trick question: why can't we take all digits even (so 0 could be a digit)?

CRT problems (2)

Problem 2: if

$$v \mod P_1 = \sum_{i \ge 0} d_i^{(1)} X^i$$
 and $v \mod P_2 = \sum_{i \ge 0} d_i^{(2)} X^i$

are both finite, and we can "merge", is the merged expansion $v = \sum_{i \geq 0} d_i X^i$ again finite?

In other words, is there N with $\sum_{i=0}^{N-1} d_i X^i = v$?

This is a difficult question. We restrict to the case where at least one of P_1 and P_2 is linear.

Phasing in

Assume $P_1 = X - p_0$, and let $r = \text{Res}(P_1, P_2) = P_2(p_0)$. Then $\mathbb{Z}[X]/(P_1, P_2) \cong \mathbb{Z}/(r)$. Now, assume all digits are pairwise congruent modulo r.

Lemma. We have $X \equiv 1 \pmod{(P_1, P_2)}$. In other words, we must have $p_0 \equiv 1 \pmod{r}$.

Lemma. Let $v \in \mathbb{Z}[X]/(P_1P_2)$. The lengths of any finite expansions for v "on the left" and "on the right" are congruent modulo r.

Lemma. For i=1,2, let L_i be the length of the zero period for \mathcal{D}_i modulo P_i . Then $L_1 \equiv L_2 \pmod{r}$.

Theorem

Let P_1 and P_2 be monic polynomials in $\mathbb{Z}[X]$, with P_1 linear, and let \mathcal{D}_1 and \mathcal{D}_2 be digit sets such that $\mathbb{Z}[X]/(P_1)$ and $\mathbb{Z}[X]/(P_2)$ become number systems. Put $r = \text{Res}(P_1, P_2)$, and assume $r \neq 0$. For i = 1, 2, let L_i be the length of the zero period for \mathcal{D}_i modulo P_i . Then the following are equivalent:

- all elements of $\mathcal{D}_1 \cup \mathcal{D}_2$ are pairwise congruent modulo r, and $gcd(L_1, L_2) = |r|$;
- $\mathbb{Z}[X]/(P_1P_2)$ becomes a number system with digit set

$$\psi^{-1}(\mathcal{D}_1 \times \mathcal{D}_2).$$

Note: if all assumptions are satisfied, it follows that

$$P_1(0) \equiv -1 \pmod{r},$$

independently of the chosen digit sets.

Example (continued)

Still, let $P_1 = X - 5$ and $P_2 = X - 7$, with the given digits. They are all congruent to 1 modulo 2.

The zero periods of both are $0 \rightarrow -1$, of length 2.

It follows that $\mathbb{Z}[X]/((X-5)(X-7))$ becomes a number system with the digits $\{1, -1, 3, -3, 5, X, X-2, -X+2, X-4, X-6, -X+6, X-8, -X+8, -X+10, 2X-7, 2X-9, -2X+9, 2X-11, -2X+11, 2X-13, -2X+13, -2X+15, 3X-14, 3X-16, -3X+16, -3X+16, -3X+18, 3X-18, -3X+20, 4X-21, 4X-23, -4X+23, -4X+25, 5X-28, -5X+30\}.$

It also works with the digit sets $\{505, 1, -1, 3, -3\}$ at base 5 and $\{777, 1, -1, 3, -3, 5, -5\}$ at base 7. The corresponding zero periods have length 10 and 4, respectively.