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Definition of number systems

A canonical number system is given by
e an algebraic integer «, the base, and

e a complete residue system D of Z[a] modulo «, usually taken
as {0,...,|Norm(a)| — 1}, the digit set,

with the property that every a € Z[a] has a finite expansion

E .
Z d;a’ (d; € D).
=0

This definition represents a step in an ongoing chain of generali-
sations, and is the last one that has a recognisable “number’ as
a base.



Definition of number systems (2)

The following generalisation still has all the “structure” that we
need to study number systems. We take:

e a finite free Z-module V:

e a Z-linear map ¢ : V — V with nonzero determinant;

e a finite subset D of V that contains a complete residue system
of V- modulo its subgroup ¢(V).

Note that V does not have a natural norm; we cannot yet talk
about “large” or “small” elements of V. Later, we will choose a

suitable norm.

Note also that we do not require O € D.



Digits
If the digit set D is exactly a complete residue system, we call it

irredundant, otherwise it is redundant.

If D is irredundant, then for each v € V, we write v modp ¢, or
simply v mod ¢, for the unique digit d such that v —d € ¢(V).

We then define the transformation T': V — V by

T(v) = ¢~ (v — (v mod ¢)),
and the (¢, D)-expansion of v € V by

N ¢'(d;)  with  d; =T"(v) mod é.
i>0



Periodic and finite expansions

We know: if ¢ is expanding, then for all v € V, the (¢, D)-expansion
IS eventually periodic.

When is Y ¢'d; a finite expansion?
i>0

Answer: when Y ¢'d; = Z ¢'d;, SO Z ¢'d; =0 |

i>0 i=0 i=N
If O is a digit, this is simple: d;, =0 for: = N,N +1,...

If O is not a digit, and ¢ is expanding, the only way is to have a
zero period:

-1
> ¢'d; =0,
i=0

and this repeated indefinitely.



The zero period

Assume D is irredundant and ¢ is expanding. Then we saw
d; = T*(v) mod ¢;

because expansions are unique, we see that the zero period is
unique and is found as the (¢, D)-expansion of 0.

Let's see what this means for the transformation 7' on V. The
zero period can be represented as

0— T(0) =¢"1[0—(0mod ¢)] = T?(0) —...— 0.

If any nonzero element v has a finite expansion, then the sequence
(T™(v))n>0 Must reach 0, and return there periodically. In partic-
ular, O must be a purely periodic element under T'.

Conversely: if 0 is not purely periodic, then for all n > 0, T"(0)
does not have a finite expansion.



Definition of number systems (3)

Before I forget... let me complete the definition! Let ¢ be expand-
ing. I call a triple (V,¢,D) a number system if every v € V has a
finite (¢, D)-expansion, as defined above.

If D is irredundant, the expansion is automatically unique.

It is also interesting to look at redundant digit sets:

e simply add all elements that do not have a finite expansion to
the digit set (if you can’t beat 'em, join 'em)! The digit set
remains finite;

e add some syntactic or other conditions on the expansions to
ensure uniqueness (Non-Adjacent Form, etcetera).



Example

Consider V = Z, and let M be an odd integer, |M| > 2. Take ¢,
to be multiplication by M. Consider the irredundant digit set

Dy={-M+2, —-M+4,...,-1,1, ..., M—2, M}

I claim that this digit set makes (Z, ¢z, D)ps) into @ number system.

a — (a modp, M)
M
T we have |T'(a)| < |al.

We have here T'(a) = . it's easy to prove that

whenever |a| >

O—-—M
But 1 and —1 are digits, and 0 — v, = —1 — 0, so we have a

finite zero-period.

We will call these digits the odd digits modulo M.



The spectral radius

Theorem. Assume that the spectral radius p of qb_l IS less than %

Let € > O be less than %—p((b_l), and let || - || be a norm on V,
such that the induced operator norm ||¢~1|| < p(¢—1) +«.

Let D be an irredundant digit set with the property that, for all
deD and all v eV,

v=d (mod ¢) = |[[d| < |lv]].

We call D a set of shortest digits for the norm || -||.
Then (V,¢,D) is a number system.

(This result was also proved by German & Kovacs (2007).)



The spectral radius (2)

Proof. We have, for all v € V,
IT@)] = |¢~" (v = (v mod )| < - 2|jv]| < |lv],

where ¢ = p(¢~1) + e < 5, unless v = v mod ¢. It follows that for
all v € V, the sequence T"(v) must reach 0. Q.E.D.

We note that it is possible to construct a positive definite inner
product on V such that the induced norm has the required prop-
erties. This yields an effective algorithm to find a set of shortest
digits for a given V and o.



Ideal class groups

The following are equivalent:

e 0.V —» Vis a Z-endomorphism;
e V is a Z[¢]-module.

Lemma. Assume that the minimal polynomial and characteristic
polynomial of ¢ are equal. Then V is isomorphic, as a Z[¢]-module,
to an ideal of Z[¢].

Under this assumption, V is isomorphic to Z[X]/(P), for a polyno-
mial P, iff the mentioned ideal is principal. Equivalently: if ¢ has
matrix A for some basis of V, then

A= C‘lRPC (Rp the companion matrix of P)

for some unimodular matrix C.



The Chinese Remainder Theorem (1)

From now on, we take all (V, ¢) to be isomorphic, as a Z[¢]-module,
to Z[X]/(P), for some monic polynomial P.

Let P; and P in Z[X] be coprime monic polynomials. The Chinese
Remainder Theorem tells us that

Qx] L Qx] Q[X],

(PLPy) (P~ (P2) '

but what about Z[X]?

Z[X] % Z[X]XZ[X]j Z[X]
(P1P2) (P1) (P2) (P1,Po)

The sequence 0 — » O IS exact.

Thus, ¥ is an isomorphism iff 1 € (P1, Py), iff Res(Pq, Py) = +1.



The Chinese Remainder Theorem (2)

What do we want with the CRT?7 Suppose:

e Z[X]/(P1) is a number system with digit set Dq;
e Z[X]/(Po) is a number system with digit set D5.

Let v € V =Z[X]/(P1P>); we expand

vmod P, = S dPx%  wmod P, =Y dPxi,
i>0 i>0
d; = dgl) (mod Pl)

Suppose that for all : > 0 we can solve (2)

d; € V; then we have an

expansion v= Y d;X' modulo Py P!
i>0

for



CRT problems (1)

d=d1) (mod Py)

solvable?
d=d2) (mod P,)

Problem 1: when is {

From the exact sequence, we see: iff
d1) mod (Py, P>) = d(? mod (Py, P>).
This is satisfied, e.qg., if we have Res(Py,P>) = +1.

But we can also select the digits in such a way that the above
system is always satisfied!

Note, by the way, that Z[X]/(P1, Pp) is a finite ring, as we assume
P; and P> to be coprime.



Example

Let Py =X —-5and Pp = X — 7, and let's try the canonical digits
on both sides.

Now suppose we have d{1) =0 and d(?) = 1. Can we “merge”’?
CRT: d=5(X —5) (mod (X —5)(X —7)). That's not integral!
And indeed, we have |Res(X —5,X —7)| = 2.

Better idea: let all digits be pairwise congruent modulo 2. As we
saw above, we can take

D; ={-3,-1,1,3,5} and D,={-5,-3,-1,1,3,5,7}.

Trick question: why can't we take all digits even (so 0 could be a
digit)?



CRT problems (2)

Problem 2: if

vmod Py = Y dz(l)Xi and vmod P, =Y de)Xi
i>0 i>0
are both finite, and we can “merge”, is the merged expansion
v =Y;>0d; X" again finite?

In other words, is there N with Zf\;_ol d; X" = v7?

This is a difficult question. We restrict to the case where at least
one of P; and P, is linear.



Phasing In

Assume P; = X — pg, and let r = Res(Py,P>) = P>(pg). Then
Z[X]/(P1,Py) = Z/(r). Now, assume all digits are pairwise con-
gruent modulo r.

Lemma. We have X =1 (mod (P1, P>)). In other words, we must
have po =1 (mod r).

Lemma. Letwv € Z[X]/(P1P>). The lengths of any finite expansions
for v “on the left” and “on the right” are congruent modulo r.

Lemma. For ¢+ = 1,2, let L; be the length of the zero period for
D; modulo P;. Then L1 =L, (mod r).



T heorem

Let P; and P>, be monic polynomials in Z[X], with P; linear, and
let D1 and D, be digit sets such that Z[X]/(P1) and Z[X]/(P»)
become number systems. Put »r = Res(Pq, P»), and assume r % 0.
For:= 1,2, let L; be the length of the zero period for 'D; modulo
P;. Then the following are equivalent:

e all elements of Dy U D, are pairwise congruent modulo r,
and gcd(Lq, Lp) = |r|;
e Z[X]/(P1P>) becomes a number system with digit set

v~ (D1 x Dy).

Note: if all assumptions are satisfied, it follows that
P;1(0)=-1 (modr),

independently of the chosen digit sets.



Example (continued)

Still, let P =X —5 and P, = X — 7, with the given digits. They
are all congruent to 1 modulo 2.

The zero periods of both are 0 — —1, of length 2.

It follows that Z[X]/((X —5)(X — 7)) becomes a number system
with the digits {1, -1, 3, -3,5, X, X -2, - X +2, X -4, X —6,
-X+6, X-8 —-X+8, - X+10, 2X -7, 2X —9, —2X 4+ 9,
2X —11, -2X + 11, 2X — 13, —2X + 13, —2X 4+ 15, 3X — 14,
3X —16, -3X 4+ 16, -3X + 18, 3X — 18, —3X + 20, 4X — 21,
4X —23, —4X 4+ 23, —4X + 25, 5X — 28, —5X + 30}.

It also works with the digit sets {505,1,—-1,3, -3} at base 5 and
{r77,1,—1,3,—3,5,—5} at base 7. The corresponding zero periods
have length 10 and 4, respectively.



