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Central Tiles and Rauzy fractals

Introduced by Rauzy and Thurston in different frameworks

Symbolic dynamical systems Geometrical representation of the shift
map on a substitutive dynamical system. The shift map commutes
with a piecewise exchange of domains.

Beta-numeration Geometric compact representation of real numbers
with an empty fractional greedy expansion in a non-integer
numeration system.

Discrete geometry Renormalized limit of an inflation action on faces
of discrete planes.



Specific topological properties

O inner point connectivity

Haussdorf
dimension of the
boundary

disklikeness
Parametrization of the
boundary

(0 inner point)

( 0 not inner point)

(not connected)

Give criterions for topological properties that can be checked
algorithmically ?



Definitions

Substitution. endomorphism σ of the free monoid {0, . . . , n}∗.
σ : 1 → 12 2 → 13 3 → 1. (β3 = β2 + β + 1)

Primitivity. The map M obtained by abelianization of 0, . . . , n∗ on
σ is primitive.

Periodic points. If σ is primitive, then there exists at least a periodic
point w for σ:

σν(w) = w .

unit Pisot assumption The dominant eigenvalue β of the abelianized
matrix of σ is a unit Pisot number.

σ : 1 → 12 2 → 3 3 → 1 4 → 5 5 → 1 (β3 = β + 1)

Let d ≤ n be the algebraic degree of β. Let Minβ be its minimal
polynomial.



Central Tile

Beta-decomposition of the space:

Beta-expanding line He

Beta-contracting space Hc generated by the eigenvectors for
the algebraic conjugates βi ’s of β.
Beta-Orthogonal space: subspace Ho generated by the other
eigenvectors.

Beta-projection: projection on the beta-contracting plane parrallel
to GHe + Ho

∀w ∈ A∗, π(l(σ(w))) = hπ(l(w)).



Central Tile

σ(1) = 112, σ(2) = 113, σ(3) = 4, σ(4) = 1

112 112 113 112 112 113 112 112 4 112 112
113 112 112 113 112 112 113 112 112 4 112
112 113 112 112 113 1 112 ...

Construction of the central tile

Compute a periodic point

Embed it as a stair in Rn.

Project the stair on the
beta-contracting plane

Keep memory of the type of
step when projecting

Take the closure
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Central Tile

Construction of the central tile

Compute a periodic point

Embed it as a stair in Rn.

Project the stair on the
beta-contracting plane

Keep memory of the type of
step when projecting

Take the closure

Definition
Let σ be a primitive unit Pisot substitution. The central tile of σ is
defined by

Tσ = {π(l(u0 · · · ui−1)); i ∈ N}.

Subtile: T (a) = {π (l(u0 · · · ui−1)) ; i ∈ N, ui = a}.



Main topological properties

Theorem
Let σ be a primitive Pisot unit substitution.

The central tile T is a compact subset of Rd−1, with nonempty
interior and non-zero measure. (d degree of Minβ).

Each subtile is the closure of its interior.

The subtiles of T are solutions of the following affine Graph Iterated
Function System:

T (a) =
⋃

b∈A, σ(b)=pas h(T (b)) + π(l(p))

The subtiles are disjoint when the substitution satisfies the so-called
coincidence condition.

T (1) = h[T (1) ∪ (T (1) + πl(e1))
∪T (2) ∪ (T (2) + πl(e1)) ∪ T (4)],

T (2) = h(T (1) + 2πl(e1)),
T (3) = h(T (2) + 2πl(e1)),
T (4) = h(T (3) σ(1) = 112, σ(2) = 113, σ(3) = 4,

σ(4) = 1
Rauzy, Arnoux-Ito, Akiyama, Sirvent-Wang, Ei-Hui-Ito, Canterini-S., Berthé-S.



Specific topological properties

O inner point

(Sufficient
conditions, CNS
conditions)
[Rauzy, Akiyama]

connectivity

(Sufficient condition,
necessary condition)
[Canterini, Messaoudi]

Haussdorf
dimension of the
boundary

(Examples of
computation)
[Feng-Furukado-Ito,
Thuswaldner]

disklikeness
Parametrization of the
boundary

(Examples)
[Messaoudi,Sirvent]

(0 inner point)

( 0 not inner point)

(not connected)

Give criterions for topological properties that can be checked
algorithmically ?



The main object: tilings
A multiple tiling is given by a translation set Γ ⊂ Hc ×A such that

Hc =
⋃

(γ,i)∈Γ Ti + γ

Delaunay set (finite number of intersections for a given tile).

almost all points in Hc are covered exactly p times.

Self-replicating substitution multiple tiling

Γsrs = {(π(x), i) ∈ π(Zn)×A,
0 ≤ 〈x, vβ〉 < 〈ei , vβ〉}.

Delaunay set, self-replicating,
aperiodic and repetitive.

Tiling iff super-coincidence.
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Self-replicating substitution multiple tiling

Γsrs = {(π(x), i) ∈ π(Zn)×A,
0 ≤ 〈x, vβ〉 < 〈ei , vβ〉}.

Delaunay set, self-replicating,
aperiodic and repetitive.

Tiling iff super-coincidence.

Lattice multiple tiling
(eB(1), . . . , eB(d)) Z-basis of π(Zn)

Γlattice = {(π(x), i) ∈ π(Zn)×A,∑d
1 〈x, eB(k)〉 = 0}.

Periodic and Delaunay set.
When σ irreducible, tiling iff
super-coincidence.



The main tool: IFS description of intersection of tiles

Suppose that two tiles intersect. I = T (a) ∩ (π(x) + T (b)) 6= ∅.
Each tile admits a decomposition, hence

T (a) =
⋃

σ(a1)=p1as1

h(T (a1)+πl(p1)). T (b) =
⋃

σ(b1)=p2bs2

h(T (b1)+πl(p2)).

Then the union can be rewritten as

I =
⋃

σ(a1) = p1as1
σ(b1) = p2bs2

h[T (a1) + πl(p1)] ∩ {h[T (b1) + πl(p2)] + π(x)}.

=
⋃

hπl(p1) + h[T (a1) ∩ (T (b1) + πl(p2)− πl(p1) + h−1π(x))]

The boundary graph maps the intersection of two tiles to each
intersections that is contained in it (up to a translation).

(0, a) ∩ (π(x), b) → (0, a1) ∩ (πl(p2)− πl(p1) + h−1π(x), b1)



The main tool: IFS description of intersection of tiles

Suppose that two tiles intersect. I = T (a) ∩ (π(x) + T (b)) 6= ∅.
Each tile admits a decomposition, hence

T (a) =
⋃

σ(a1)=p1as1

h(T (a1)+πl(p1)). T (b) =
⋃

σ(b1)=p2bs2

h(T (b1)+πl(p2)).

Then the union can be rewritten as

I =
⋃

σ(a1) = p1as1
σ(b1) = p2bs2

h[T (a1) + πl(p1)] ∩ {h[T (b1) + πl(p2)] + π(x)}.

=
⋃

hπl(p1) + h[T (a1) ∩ (T (b1) + πl(p2)− πl(p1) + h−1π(x))]

The boundary graph maps the intersection of two tiles to each
intersections that is contained in it (up to a translation).

(0, a) ∩ (π(x), b) → (0, a1) ∩ (πl(p2)− πl(p1) + h−1π(x), b1)



The main tool: IFS description of intersection of tiles

Suppose that two tiles intersect. I = T (a) ∩ (π(x) + T (b)) 6= ∅.
Each tile admits a decomposition, hence

T (a) =
⋃

σ(a1)=p1as1

h(T (a1)+πl(p1)). T (b) =
⋃

σ(b1)=p2bs2

h(T (b1)+πl(p2)).

Then the union can be rewritten as

I =
⋃

σ(a1) = p1as1
σ(b1) = p2bs2

h[T (a1) + πl(p1)] ∩ {h[T (b1) + πl(p2)] + π(x)}.

=
⋃

hπl(p1) + h[T (a1) ∩ (T (b1) + πl(p2)− πl(p1) + h−1π(x))]

The boundary graph maps the intersection of two tiles to each
intersections that is contained in it (up to a translation).

(0, a) ∩ (π(x), b) → (0, a1) ∩ (πl(p2)− πl(p1) + h−1π(x), b1)



The main tool: IFS description of intersection of tiles

Suppose that two tiles intersect. I = T (a) ∩ (π(x) + T (b)) 6= ∅.
Each tile admits a decomposition, hence

T (a) =
⋃

σ(a1)=p1as1

h(T (a1)+πl(p1)). T (b) =
⋃

σ(b1)=p2bs2

h(T (b1)+πl(p2)).

Then the union can be rewritten as

I =
⋃

σ(a1) = p1as1
σ(b1) = p2bs2

h[T (a1) + πl(p1)] ∩ {h[T (b1) + πl(p2)] + π(x)}.

=
⋃

hπl(p1) + h[T (a1) ∩ (T (b1) + πl(p2)− πl(p1) + h−1π(x))]

The boundary graph maps the intersection of two tiles to each
intersections that is contained in it (up to a translation).

(0, a) ∩ (π(x), b) → (0, a1) ∩ (πl(p2)− πl(p1) + h−1π(x), b1)



Self-replicating substitution neighbor graph

Nodes: pairs of faces [(0, a), (π(x), b)] such that

(π(x), b) ∈ Γsrs (points in the translation set)
||π(x)|| ≤ ||T || (if not, the intersection is empty)

There is an edge between (0, a) ∩ (π(x), b) and (0, a1) ∩ (π(x1), b1)
if T (a1) ∩ (π(x) + T (b1)) appears up to a translation in the
decomposition of T (a) ∩ (π(x) + T (b)).

Theorem
The self-replicating substitution boundary graph is finite.

T (a) ∩ (π(x) + T (b)) is nonempty iff the self-replicating substitution
boundary graph contains an infinite walk starting in [(0, a), (π(x), b)].

Each path of the graph correspond to a point lying at the intersection.
The boundary graph is a GIFS description of the boundary of the central
tile.
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Example

The central subtiles intersect 17 other
tiles in the SRS tiling

T (1) has 5 neighbourgs outside the
central tile.



Several graphs
It is algorithmically possible to compute graphs

Self-replicating substitution neighbor graph Pairs of tiles
intersecting in the SRS multiple tiling.

Connectivity graph Pairs of subtiles of T (a) with a common point.

Lattice neighbor graph Pairs of tiles in lattice multiple tiling.

Triple point neighbor graph Triplets of tiles intersecting in the SRS
multiple tiling.

Quadruple point neighbor graph Quadruplets of tiles intersecting in
the SRS mutiple tiling.

6 intersecting pairs in the lattice
tiling

20 intersecting triplets in the SRS
tiling (redundancy)

4 intersecting quadruplets in the
SRS tiling



Application to boundary

Proposition

The SRS multiple tiling is a tiling iff the dominant eigenvalue of the
matrix of the SRS neighbor graph is strictly less than β.
The lattice multiple tiling is a tiling iff the dominant eigenvalue of the
matrix of the lattice neighbor graph is strictly less than β.

Application: σ(1) = 112, σ(2) = 113, σ(3) = 4, σ(4) = 1 generates a
lattice tiling.
σ(1) = 12, σ(2) = 13, σ(3) = 4, σ(4) = 5, σ(5) = 1 does not generate a
lattice tiling with the given vectors.



Application to boundary

Proposition

Let λ be the largest conjugate of β and λ′ the smallest conjugate. Let µ
be the dominant eigenvalue of the matrix of the SRS neighbor graph.
If the SRS neighor graph is strongly connected then

dimB(∂T ) = dimB(∂T (a)) = d − 1 +
log λ− log µ

log λ′

Application: Explicit computations of Haussdorf dimensions.



Application to connectivity

Connectivity graph For each subtile T (a), their is an edge between two
subunits iff they intersect.

Proposition

Each T (a) is a locally connected continuum if and only if the
connectivity graph Ga(V ,E ) is connected for each a ∈ A.
T is connected iff each T (a) and the subtiles have connections.

σ(1) = 3; σ(2) = 23, σ(3) = 31223.

The three central tiles intersect.

One subtile of T (2) intersects no
other subtile: some nodes are
missing in the graph.



Criterion for non disklike

Proposition

Suppose that β has degree 3. If the central tile T is homeomorphic to a
closed disk then T has at most six neighbors λ in a lattice tiling with the
property

|Tσ ∩ (Tσ + γ)| > 1.

Deduced from Bandt and Gelbrich.

Application: when there is lattice tiling, check if the central tile is not
disklike.

8 neighbours. Not homeomorphic to a
closed disk.

Only 6 neighbors. No conclusion



Criterion for disklike

Theorem
Suppose that β has degree 3. Let B1, . . . Bk be the boundary pieces
T (a) ∩ (T (b) + π(x)). Suppose that

The Bi ’s form a circular chain: they can be arranged so that they
have one interesection point with the following and no intersection
with the others.

The self-affine decomposition of each Bi is a regular chain

Then the central tile is disklike

Translation into the boundary graph framework. A boundary piece Bi

corresponds to a node [(0, a), (πx, b)].



Algorithmic criterion for disklike

Identify pairs intersecting as a singleton

Check that every triple intersection in a singleton.

For every pair-intersection [(0, a), (πx, b)] that is not a singleton, check that it
intersect exactly two other intersections.

The intersections make a loop.

Similar checking for the successors of [(0, a), (πx, b)].

σ(1) = 112, σ(2) = 113, σ(3) = 4,
σ(4) = 1

17 pair-intersections of tiles.

4 contains exactly one point
(Sommets 1,15, 16, 17)

13 remaining infinite
pair-intersections.

The central tile for σ(1) = 112,
σ(2) = 113, σ(3) = 4, σ(4) = 1 is
homeomorphic to a closed disk.



Criterion for not simply connected

Theorem
The SRS boundary graph, triple point graph and quadruple point graph
allow to check a condition for not simply connected.

Not simply connected



Conclusion

Many topological properties of central tiles can be checked.

Understand the structure of boundary, triple and quadruple graphs
for classes of substitutions to deduce general properties?

What is the relation between topological properties and ergodic
properties of the substitutive dynamical system?

What can be deduced from topological properties about
beta-numeration systems?

(Find a good programmer to compute efficiently the graphs to
check the conditions?)


