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Words

An alphabet A is a finite set of elements that

are called letters. We take A = {0,1}.

A word is a function u from a finite or infinite

block of integers to A. If this block of integers

contains negative numbers we call u a central

word. If a word u is finite, we denote by |u| the

number of letters in u, and by |u|a the number

of occurrences of the letter a in u.

A word u is called balanced if ||v|0−|w|0| < 2 for

all subwords v, w of equal length. A finite word

u is called strongly balanced if u2 is balanced.

Here u2 is the concatenation of u with u.

A strongly balanced word is called a Christoffel

word when it is smaller than each of its shifts

in the lexicographic order (the zeros are placed

as far to the left as possible).



Central progressions wu

Definition. Let u = u(0) . . . u(m − 1) be a

strongly balanced finite word, containing both

zeros and ones, with gcd(|u|0, |u|1) = 1. The

cutting path in the x-y-plane corresponding to

u consists of m + 1 integer points pi given by

pi = (|u(0) . . . u(i − 1)|0, |u(0) . . . u(i − 1)|1) for

i = 0, . . . , m, connected by line segments of

lengths 1.

Draw the line through the origin and the end

point of the path, given by y = |u|1
|u|0

x. We

project each integer point pi on the cutting

path parallel to this line onto the y-axis. By

P (pi) we denote the second coordinate of the

projection of pi. It is clear that P (p0) = P (pm) =

0.



Definition. We define the function wu as fol-

lows. If P (pi) = k/|u|0 then wu(−k) = i. We

say wu has the number i at position −k. We

call wu the central progression corresponding

to u.

Some properties of a central progression wu

corresponding to u = u(0) . . . u(m− 1).

• Its domain is a block of integers of length

m of Z containing 0.

• Its image is the set {0,1, . . . m− 1}.

• There exists a c ∈ Z such that if k is in the

domain of w, then w(k) ≡ ck (mod m).

Example 1. Let u = 01001, then the central

progression wu is given by w = 20314.



Central words vw

Definition. Let w be a central progression.

Then the central word vw is the word that

you get by replacing every number in w that

is smaller than its right neighbour by 0, and

every number that is larger by 1.

Example 2. If u = 01001, then wu = 20314,

and vw = 10101, where we underlined the let-

ter at position 0.

If u = 0110101101101, then

wu = 11 3 8 0 5 10 2 7 12 4 9 1 6, and

vw = 1010010010100.



Sturmian substitutions

A substitution σ is an application from the al-

phabet A = {0,1} to the set of finite words. It

extends to a morphism by concatenation, that

is, σ(uv) = σ(u)σ(v).

A fixed point of a substitution σ is an infinite

word u with σ(u) = u.

If σ is a substitution, we call

Mσ =

(
|σ(0)|0 |σ(0)|1
|σ(1)|0 |σ(1)|1

)
its incidence matrix.

A one-sided infinite word is Sturmian if it is

balanced and not ultimately periodic.

We call a substitution σ over two letters Stur-

mian if σ(u) is a Sturmian word for every Stur-

mian word u.



Let σ be a Sturmian substitution that has in-

cidence matrix with determiant 1 and a fixed

point starting with 0, let un = σn(0), let wn =

wun and let vn = vwn for n > 0.

Example 3. Let σ be the substitution defined

by σ(0) = 010, σ(1) = 01. Then σ is a Stur-

mian substitution with Mσ =

(
2 1
1 1

)
. We

have

u0 = 0
u1 = 010
u2 = 01001010
u3 = 010010100100101001010
. . . . . .



This yields the following table of central pro-
gressions wn.

n wn

0 0
1 2 0 1
2 7 2 5 0 3 6 1 4
3 20 7 15 2 10 18 5 13 0 8 16 3 →

→ 11 19 6 14 1 9 17 4 12
. . . . . .

We get the following table of central words.

n vn

0 0
1 1 0 0
2 1 0 1 0 0 1 0 0
3 1 0 1 0 0 1 0 1 0 0 1 0 →

→ 0 1 0 1 0 0 1 0 0
. . . . . .

Looking at the table above, we notice that if
we define a substitution τ by τ(0) = 100, τ(1) =
10, then τ(vn) = vn+1 for each n ≥ 0.



Question. For which substitutions σ does

there exist a substitution τ so that τ(vn) =

vn+1 for each n ≥ 0, and what can we say

about τ?

Theorem. Let σ be a Sturmian substitution

with σ(0) and σ(1) Christoffel words. Then τ

exists, and it is also a Christoffel substitution.

Example 4.

• σ :

{
0 → 00101
1 → 01

gives τ :

{
0 → 01011
1 → 011

• σ :

{
0 → 0010101
1 → 01

gives τ :

{
0 → 0110111
1 → 0111

• σ :

{
0 → 0101011
1 → 01011

gives τ :

{
0 → 000101
1 → 001



From now on, assume σ is a Sturmian sub-

stitution that has incidence matrix with deter-

miant 1, a fixed point starting with 0 and is

NOT a Christoffel substitution. Put Mσ =(
a b

c + ag d + bg

)
with a + b > c + d.

Denote by e the number of values left of the

0 position in wσ(0) = w1, by f the number of

values left of the 0 position in wσ(1), by p the

number of zeros in v1 left of the underlined

letter, and set r = e + b(f − p− eg).

Example 5. Let Mσ =

(
3 2
7 5

)
and σ(0) =

01001, σ(1) = 010010101001. Then g = 2,

wσ(0) = 2 0 3 1 4, v1 = 10101 and wσ(1) =

9 2 7 0 5 10 3 8 1 6 11 4. Hence e = 1, f =

3, p = 0 and r = 3.



Definition. We denote by τ the substitution
that has

Mτ :=

(
c + d + dg a + b + bg − (c + d + dg)

c + dg a + bg − (c + dg)

)
as incidence matrix, and which is such that

• if we cyclically shift τ(0) over r positions
to the right, we get a Christoffel word,

• the (r + 1)th letter of τ(0) is underlined,

• τ(1) equals the left a + bg letters of τ(0).

Example 5 (Continued). We had Mσ =

(
3 2
7 5

)
,

σ(0) = 01001, σ(1) = 010010101001 and r =
3.

We get Mτ =

(
4 5
3 4

)
and τ(0) = 011010101,

τ(1) = 0110101.



Theorem. Let σ be a Sturmian substitu-

tion that has an incidence matrix with deter-

minant 1, that has a fixed point starting with

0, and that is not a Christoffel substitution.

Let the Sturmian substitution τ and the cen-

tral word vn for n ≥ 1 be defined as before.

Then τ(vn) = vn+1.

Remark. If the substitution τ has a fixed point

starting with 0, we can apply the procedure

again, and call the result φ. If g = 0 then

Mφ = Mσ, hence φ(0), φ(1) are cyclic shifts of

σ(0), σ(1) respectively. In case σ is a Christof-

fel substitution, we get φ = σ. This is not true

in general.



Example 6. Let Mσ =

(
3 4
2 3

)
and σ(0) =

0101101, σ(1) = 01101. Then e = 1, f =

1, p = 0 and r = 5. We get Mτ =

(
5 2
2 1

)
and

τ(0) = 0100100, τ(1) = 010. Repeating this

process, we get e = 4, f = 1, p = 1 and r =

4, which results in φ(0) = 1011010, φ(1) =

10110.



What if determinant is -1?

We can still form the central words vn, except

that for odd n, we need to reflect the central

progressions wn in the origin, before we con-

struct vn from wn.

Since the substitution σ2 has incidence matrix

with determinant 1, it is clear that there exists

a substitution τ2 such that v2n = τ2(v2n−2).

But as the following example shows, there does

not need to exist a substitution τ such that

vn = τ(vn−1).



Example 7. Let Mσ =

(
2 1
1 0

)
and σ(0) =

001, σ(1) = 0. Then we get the following

table for vn.

n vn

1 1 1 0
2 1 1 0 1 0 1 0
3 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 0

. . . . . .

It is easy to check that there is no substitution

τ such that τ(v2) = v3.

However, this example suggests that if we de-

fine τ by τ(0) = 110, τ(1) = 10, and τ(ab) =

τ(b)τ(a) for every a, b in A, then we have vn =

τ(vn−1).

An interesting question is if similar functions

exist for all Sturmian substitutions that have

an incidence matrix with determinant −1.


