
ON THE AMORTIZED COST OF AN ODOMETER

V. Berthé (LIRMM/CNRS), C. Frougny (LIAFA/Univ. Paris 8),
M. Rigo (Univ. Liège), J. Sakarovitch (ENST/CNRS)

Work in progress...
Journées de Numération – TU Graz – 20th April 2007

So far, different aspects of odometers have been studied :

Combinatorial, Metrical, Topological, Dynamics,
Sequential properties, . . .

G. Barat, T. Downarowicz, C. Frougny, P. Grabner, P. Liardet,
R. Tichy, A. M. Vershik, . . .

OUR MAIN QUESTION

What is the cost / complexity in average for computing
the odometer (i.e., successor map) on finite words,
e.g. on integer representations ?

n −→ rep(n) ∈ Σ∗

↓ ↓
n + 1 −→ rep(n + 1) ∈ Σ∗

WHERE DOES IT COME FROM?

WORDS’05

E. Barcucci, R. Pinzani, M. Poneti, Exhaustive generation of
some regular languages by using numeration systems.

For numeration systems built on some linear recurrent
sequences of order 2, the “amortized cost” for computing
rep(n + 1) from rep(n) is bounded by a constant (CAT).

J. SAKAROVITCH , ELTS. DE THÉORIE DES AUTOMATES’03

For any rational set R of A∗, the odometer on R is a
synchronized function.

i.e., letter-to-letter (left or right) finite transducer with a terminal
function appending values of the form (u, ε) or (ε, v)

More than synchronized functions, we will often assume that
we have a (right) sequential transducer to do the computation.

A transducer T is sequential if
◮ T has a unique initial state,
◮ the underlying input automaton is deterministic.

1/0 1/0

1/1
0/0

0/1
0/1

More than synchronized functions, we will often assume that
we have a (right) sequential transducer to do the computation.

A transducer T is sequential if
◮ T has a unique initial state,
◮ the underlying input automaton is deterministic.

1 1

0
0

0
1

Usual binary system

A (TRIVIAL) SEQUENTIAL FUNCTION

1/0 1/0

1/1
0/0

0/1
0/1

10100111
10101000

DEFINITION (COST)

We define the cost for computing rep(n + 1) from rep(n) as
◮ the position up to where the carry propagates, or
◮ the length of the path lying in the “transient part”,
◮ for an integer base system, the number of changed digits.

1000
1001
1010
1011

 111
 110
 101
 100
 11
 10
 1

1/0 1/0

0/1
0/1

1/1
0/0

1010
1010

0111
1000

ALTERNATIVE DEFINITION (COST)

Another interpretation for the cost in the lexicographic tree :
◮ half of the distance between rep(n) and rep(n + 1)

◮ distance to the common ancestor of rep(n) and rep(n + 1)

10000 10001 10010 10100 10101

1000 1001 1010

100 101

1

10

ALTERNATIVE DEFINITION (COST)

Another interpretation for the cost in the lexicographic tree :
◮ half of the distance between rep(n) and rep(n + 1)

◮ distance to the common ancestor of rep(n) and rep(n + 1)

1000 1001 1010

100 101

1

10

10000 10001 10010 10100 10101

So, cost can be expressed mainly on words

uav −→ ubv ′, a 6= b, |v | = |v ′|

cost = |av |

Let us introduce a different notion (computational aspects)

DEFINITION (COMPLEXITY)

The (algorithmic) complexity for computing rep(n + 1) from
rep(n) is the minimum number of operations required to
perform this computation (in the sense of a Turing machine).

REMARK

Consider a numeration system such that the odometer can be
realized by a letter-to-letter (right) sequential transducer.

In that case, the cost is equal to the (algorithmic) complexity.

Indeed, it is not possible to do less computations,
the Turing machine at least has to read the digits up to where
the carry propagates

0 # ## 1 0 01

“cost ≤ complexity”

COST 6= COMPLEXITY

X 2 − 3X + 1, β = 3+
√

5
2 , dβ(1) = 21ω, (Un)n≥0 = 1, 3, 8, 21, . . .

rep(N) = {ε, 1, 2, 10, 11, 12, 20, 21, 100, 101, 102, . . .}

forbidden factors : 2 1∗ 2

100111111 → 100111112 but 102111111 → 110000000

1
0

0

0 1 2

1

1

1

1

1

COST 6= COMPLEXITY

X 2 − 3X + 1, β = 3+
√

5
2 , dβ(1) = 21ω, (Un)n≥0 = 1, 3, 8, 21, . . .

rep(N) = {ε, 1, 2, 10, 11, 12, 20, 21, 100, 101, 102, . . .}

forbidden factors : 2 1∗ 2

100111111 → 100111112 but 102111111 → 110000000

1
0

0

0 1 2

1

1

1

1

1

COST 6= COMPLEXITY

X 2 − 3X + 1, β = 3+
√

5
2 , dβ(1) = 21ω, (Un)n≥0 = 1, 3, 8, 21, . . .

rep(N) = {ε, 1, 2, 10, 11, 12, 20, 21, 100, 101, 102, . . .}

forbidden factors : 2 1∗ 2

100111111 → 100111112 but 102111111 → 110000000

1
0

0

0 1 2

1

1

1

1

1
1 0 0 1 1 1 1 #1 1

All this work on cost/complexity can be done in a general setting

DEFINITION

An abstract numeration system is a triple S = (L, A, <) where
L is a infinite (rational) language over a totally ordered alphabet
(A, <).

The representation of n ∈ N is the (n + 1)-st word in the
genealogically (i.e., radix) ordered language L.

EXAMPLE

L = {(ab), (ac)}∗, a < b < c

0 1 2 3 4 5 6 7 · · ·

ε ab ac abab abac acab acac ababab · · ·

EXAMPLE CONTINUES... AMORTIZED COST / COMPLEXITY

ε → 1 → 10 → 11 → 100 → 101 → 110 → 111 →
1 2 1 3 1 2 1 4

In base k , kn words from ε to

n
︷ ︸︸ ︷

(k − 1) · · · (k − 1),

kn + kn−1 + · · · + 1
kn =

k − k−n

k − 1
→

k
k − 1

, as n → ∞

DEFINITION (AMORTIZED COST)

lim
n→∞




∑

w∈L,|w |≤n

cost(w)





/

#{w ∈ L : |w | ≤ n}

Same for amortized complexity

EXAMPLE CONTINUES... AMORTIZED COST / COMPLEXITY

ε → 1 → 10 → 11 → 100 → 101 → 110 → 111 →
1 2 1 3 1 2 1 4

In base k , kn words from ε to

n
︷ ︸︸ ︷

(k − 1) · · · (k − 1),

kn + kn−1 + · · · + 1
kn =

k − k−n

k − 1
→

k
k − 1

, as n → ∞

DEFINITION (AMORTIZED COST)

lim
n→∞




∑

w∈L,|w |≤n

cost(w)





/

#{w ∈ L : |w | ≤ n}

Same for amortized complexity

FIRST EXERCISE...

For Fibonacci system. . .

ε → 1 → 10 → 100 → 101 → 1000 → 1010 →
1 2 3 1 4 2 5

amortized cost = amortized complexity →
τ

τ − 1
≃ 2.618

FIRST EXERCISE...

For Fibonacci system. . .

ε → 1 → 10 → 100 → 101 → 1000 → 1010 →
1 2 3 1 4 2 5

amortized cost = amortized complexity →
τ

τ − 1
≃ 2.618

THEOREM

Let L be a rational language having M as trim minimal
automaton.

If the adjacency matrix M of M is primitive with β > 1 as
dominating Perron eigenvalue and if all states of M are final,
then the amortized cost of the odometer on L is β

β−1 .

REMARK

◮ If the corresponding transducer is right sequential, then
this is exactly the amortized (algorithmic) complexity.

◮ Otherwise, we get information on the average position up
to where some change can occur. (More ?)

REMARK

All states final means L is prefix closed.

PERRON THEORY

Let M be a d × d primitive matrix having β > 1 as dominating
eigenvalue. The following holds

∀i , j ∈ {0, . . . , d − 1}, ∃cij > 0 : (Mn)ij = cij β
n + o(βn).

If x (resp. y) is a left 1 × d (resp. right d × 1) eigenvector of M
of eigenvalue β such that x.y = 1 then ∀0 ≤ i , j < d ,

cij = yi xj , i .e., lim
n→∞

Mn

βn = y.x.

If w = pas is such that
◮ q0.p = qj ,
◮ a 6= max Aqj

◮ s ∈ max(Lq0.pa)

Fix qj ∈ Q
pas −→ pbt , |s| = |t |

p a s
j

n−k k

n−1∑

k=0

(Mn−k)0j (deg+(qj) − 1) k .

Then sum over Q. . .

APPLICATIONS

RESULT

Let β > 1 be a Parry number. The amortized cost of the
odometer for the canonical linear numeration system
associated with β is β/(β − 1).

Same remark : cost = complexity when assuming that the
odometer is realized with a right sequential transducer.

C. FROUGNY ’97

For such β-numeration systems (β being a Parry number), we
have

◮ a right sequential transducer in the finite type,
◮ but NOT in the sofic case.

simple Parry number

t t

0,...,t −11

1 2

0,...,t −12

0,...,t −1

q1 q2 q

m

tm−1
m

non-simple case

t t

t

0,...,t
N+p

0,...,t −11

1 2 tN−1

0,...,t −12

0,...,t −1N

N+p

N+1

tN+1

−1

0,...,t −1

q1 q2 N
q

q
N+1

q
N+p

N+p−1t

Nt

APPLICATIONS

RESULT

Let S = (L, A, <) be an abstract numeration system built on a
rational language whose trim minimal automaton M is primitive
and has only final states. If β is the dominating eigenvalue of
M then the amortized cost of the odometer for S is β/(β − 1).

Same remark : cost = complexity when assuming that the
odometer is realized with a right sequential transducer.

NEXT STEP, EASY TO HANDLE

Consider several primitive strongly connected components. . .

Let’s have a look at the lexicographic tree

FIBONACCI WORDS OF LENGTH5

10000 10001 10010 10100 10101

1000 1001 1010

100 101

1

10

Let’s have a look at the lexicographic tree

FIBONACCI WORDS OF LENGTH5

10000 10001 10010 10100 10101

1000 1001 1010

100 101

1

10

Let’s have a look at the lexicographic tree

FIBONACCI WORDS OF LENGTH5

10000 10001 10010 10100 10101

1000 1001 1010

100 101

1

10

Let’s have a look at the lexicographic tree

FIBONACCI WORDS OF LENGTH5

10000 10001 10010 10100 10101

1000 1001 1010

100 101

1

10

Let’s have a look at the lexicographic tree

FIBONACCI WORDS OF LENGTH5

10000 10001 10010 10100 10101

1000 1001 1010

100 101

1

10

Let’s have a look at the lexicographic tree

FIBONACCI WORDS OF LENGTH5

10000 10001 10010 10100 10101

1000 1001 1010

100 101

1

10

Consequently, the total cost for all words of length n is

Cn := #{edges in Tn} + 1 = #{leaves in Tn} = #(L ∩ Σ≤n)

“Nice” hypothesis :
◮ L is a prefix closed language (uv ∈ L ⇒ u ∈ L)
◮ Any branch in the tree is infinite

REMARK

If uL : n 7→ #(L ∩ Σn) has a “nice asymptotic behavior”,
then the amortized cost can be computed. . .

lim
n→∞

∑n
i=0 Ci

#(L ∩ Σ≤n)
= lim

n→∞

∑n
i=0

∑i
k=0 uL(k)

∑n
i=0 uL(i)

QUESTION

Can we compute the amortized complexity if there is no
sequential transducer behind ?

If L is rational, when can the odometer be computed
with a right sequential transducer ? (local automaton)

p/q-BASE (S. AKIYAMA , C. FROUGNY, J. SAKAROVITCH)

p > q ≥ 1 coprime integers,

N =
k∑

i=0

ai

q

(
p
q

)i

, 0 ≤ ai < p

21011 21200 21202 21221

212221202101

212210

21

2

p/q-BASE (S. AKIYAMA , C. FROUGNY, J. SAKAROVITCH)

p > q ≥ 1 coprime integers,

N =
k∑

i=0

ai

q

(
p
q

)i

, 0 ≤ ai < p

21011 21200 21202 21221

21222101

212210

21

2

3 4

2120
65 7

9 10 118

2

1

The language of numeration is “highly” non-rational :
any two sub-trees of the lexicographic tree are non-isomorphic
but it is easy to build a digit-to-digit right sequential transducer
that realizes the odometer

PROPOSITION

For the base p/q system, p > q ≥ 1, the amortized cost (resp.
complexity) is

p
q

p
q − 1

EXAMPLE OF LANGUAGE WITH ZERO ENTROPY

a∗b∗ is a rational, prefix closed language (and any branch in the
lexicographic tree is infinite)

u(n) = #(a∗b∗ ∩ {a, b}n) = n + 1, therefore

lim
n→∞

∑n
i=0 #(L ∩ Σ≤i)

#(L ∩ Σ≤n)
= lim

n→∞

1
6(n + 1)(n + 2)(n + 3)

1
2(n + 1)(n + 2)

= +∞.

