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Definition 1 Let d > 1 and r = (r1,...,7g) € RE. To r we
associate the mapping =+ : 7% — 7Z%: For a = (ay,...,ay) € 7%
let

Tr(a) — (CIQ, ceey Ady — I_I'&J),

wherera = ria1+...+rgay. We call 7+ a shift radix system (SRS
for short) if for all a € Z% we can find some k > 0 with 7F(a) = 0.

SRS form a common generalization of canonical number systems
in residue class rings of polynomial rings as well as [-expansions
of real numbers.

Forde N, d>1 let

D; = {r e R? : Va € Z% the sequence (Tf(a))kzo is ultimately periodic}
Dcol = {rERd ; VaEZdEIk>O:Tf(a)=O}.



D, is strongly related to the set of contracting polynomials. In
particular, let

Eq(r) = {(rl,...,rd) e R? Xd—l—rdXd_l + -4 r
has only roots y € C with |y| < r}.

Let P(X) = X% —py X941 —b,;eZ[X].

e If all but one root of P is located in the open unit disc then
P is called a Pisot polynomial. Its dominant root is called
Pisot nhumber.

e If all but one root of P is located in the closed unit disc and
at least one of them has modulus 1 then P is called a Salem
polynomial. Its dominant root is called Salem number.



If P is a Pisot or Salem polynomial, we will denote its dominating
root by g3.

Let 3> 1 and put A=1{0,1,...,|8]}. Then each v € [0,00) can
be represented uniquely as a @-expansion by

v =amB™ + ap_18M 1+ - (2)
with a; € A such that

m
0<~y— > aB <g" (3)

1=n
holds for all n < m. Since the digits a; are selected as large as
possible, this representation is often called the greedy expansion

of ~ with respect to (.



K. Schmidt (1980) proved that in order to get ultimately periodic
expansions for all v € QN (0, 1) it is necessary for 3 to be a Pisot
or a Salem number.

Let Fin(B) be the set of positive real numbers having finite greedy
expansion with respect to 8. We say that 3 > 1 has property (F)
if

Fin(8) = Z[1/8] N [0, o0).

It is shown by Frougny and Solomyak (1992) that (F) can hold
only for Pisot numbers 3. Akiyama, Brunotte, Pethd and Thuswald-
ner (2005) proved that property (F) is related to the SRS prop-
erty.



Associated to Pisot and Salem numbers with periodic g-expansions
and with property (F), respectively, we define for each d € N,
d > 1 the sets

B; = {(b1,...,by) e 74 IXd—led_l—...—bd
is a Pisot or Salem polynomial} and
BY = {(by,...,bg) €Z% : X1 — by XL - —p,

is a Pisot polynomial with property (F)}.

We obviously have BY C By.

Let us consider the map ¢ : By — RI=1. If (by,...,by) € By then
let 8 be the dominant root of the polynomial

P(X)=X%—b x4 - .. —b,



Now let
¢(b17 ° 7bd) — (rd7' ° 7T2)7
where ro,...,r,y are defined in a way that they satisfy the relation
X4 pyx b= (X =) (X X2 41y,

As (by,...,by) € By, the polynomial X% 1 4+ r5Xx9=2 4 41, has
all its roots in the closed unit circle. Together with this implies
that

Y(Bg) € Dy_1.

The above-mentioned relation between property (F) and SRS
now reads as follows.

w(BY) € DY ;.

We show that ¢(B,;) and zp(Bg) are excellent approximations of
Dy_1 and DY_; respectively.



For M € Nyg we set

Bd(M) L= {(bQ,...,bd) c Zd_l : (M, bQ,...,bd) c Bd} (4)
and

BY(M) :={(ba,...,bg) € Z¥1 : (M,by,...,bg) €BY}.  (5)
With these notations we are able to state the following theorem.

Theorem 2 We have
| Ba(M)|

lim — A, (D). 6
am T d-1(Dg—1) (6)
and

BV 0

M a1 = Aa-1(Pd-1); ()

where \;_1 denotes the d — 1-dimensional Lebesgue measure.



Properties of two auxiliary mappings

For M € Z let xp; : R¥1+— 79 such that if r = (ro,...,ry) then
X1 (x) =b = (by,...,by), where by = M, by = |rg(M + ) + 5
and

1
b; = Lri(M+?“2)—?“z'+1+§J,i=2,---,d—1-
If b= (b1,...,dq) € By, then x;,(¢»(b)) = b, i.e. xy, is the inverse
of .

To prove the main theorem we need some properties of the sets

Sq(M) = xpr(Dg_1) and SY(M) = xy(DI_1)

and

Sy = UMezsd(M) and SC(Z) = UMezsg(M).



Our first Lemma shows that if |M| is large enough then the
polynomials associated to the elements of §; behaves in some
sense similar as Pisot or Salem polynomials.

Lemma 3 Let M € Z, (by,...,by) € Sg(M) and P(X) = X9 —
by X941 — .. —b,;. There exist constants ¢; = c1(d),co = co(d)
such that if |M| is large enough than P(X) has a real root (3 for
which the inequalities

B—-b1] < a1 (8)

bo Co <1>
b -2 < 2 40(5], 9
B 1 b1 |b1| b% ()

hold.



There exists (rp,...,ry) € Dy_q1 such that b = (bq1,...,by) =
XM(T25 -5 7))

It is easy to see that |r;] < 2971, Thus b, = Mr; + O(1),i =
2 ... .d.

Put Q(X) = b X% 24+ .. +by ie let P(X) = X% mxd-1_
Q(X). Then P(M) = Q(M) and P(M +t) = t(M + )41 +
Q(M +1t). Assume that M > 0 and large enough and Q(M) < 0.
As |Q(M +t)| < d2¢M (M +t)?=2 we have P(M +t) > 0 provided
t > d2%. Thus P(X) has a real root in the interval (M, M + t)
and (8) is proved with ¢; = d2¢.



The relation P(B8) = 0 implies

f=

5 52 5
T hus

bo _ (b1 — B)bo
by b1 52

5_b ,Bd

using this expression, inequality (8) and the estimates |b;| =

24 M|, i =2,...,d we get

b
|ﬁ—b1——2 <

C12d—1 n 2d|b1| d—1 2d|b |
b1

_|_
b1] — 1 (Jb1] — €1)? Z L (Jb1] —c1)d
co 1
< — 40
b1 | T <b2>
which proves the second assertion of the Lemma.




Now we are in the position to extend the definition of ¢ from
the set B; to Sy. If (b1,...,b3) € S; and |bq1| is large enough, then
let 8 be the dominant root of the polynomial

P(X)=X%—by x4 . —p,
which exists by Lemma 3. Then let

w(bla"wbd) — (’I"d,...,TQ),

where the real numbers ro,...,7r; are defined in a way that they
satisfy the relation

X4 py Xt b= (X =B (X X2 41y,



We also introduce an other mapping ¥ : Z% — Q41 py

_ b, by 1 . by bo b3
¢(b17"'7bd): b —|—b2’b +b2+b_27"'7b —|—b2+b_2
1T 3y 91T 3] 1 1T g 1
The next lemma shows that if (b1,...,b7) € S; then ¥(by,...,by)
is @ good approximation of ¥(bq,...,bz). We actually prove
Lemma 4 Let (b1,...,by) € S; and assume that |b1| is large

enough. Then

|&(bl,...,bd)—¢(bl,...,bd)‘w +O< 1 )

b13
where c3 is depending only on d.

In the next lemma we show that the set ¢(Sy) is lattice like.
More precisely we prove



Lemma 5 Let b = (b1,...,by),b" = (b, ..

b)) € Sy such that
there exists a 1 < j < d such that b; = b, # j and b;- =b; + 1.
T hen

(0, ifi>2andk#d—j+1,d—j+2
ﬁ+0(b;2), ifi>2andk=d—j+1lorj=2k=d—-1

[P®)= ()l =4 o@b;2), ifj>2andk=d—j+2orj=2k<d—1
bkl (& +0(bal2), ifj=1.




A lemma on the roots of polynomials

Lemma 6 Assume that all roots a € C of the polynomial P(x) =
X4 py 1 XL 4 4 po € R[X] satisfy |a| < p. Let e >0 and
Q(z) = X4 q; 1 X414 .. 4qo € R[X] such that |p;—q;| < e,i =
O,...,d—1. Then for every root a of P(X) there exists a root 3
of Q(X) such that

(de)t/e, ifp <1,
a— [l < d 1/d
| g (epp __11) , otherwise.



Let a € C be a root of P(X) and denote by 34,...,084 the roots
of Q(X). Then

d—1 d
Q(a) — P(a) = ) a'(q; —pi) = |] (@ =5y).
i=0 i=1

We may assume without loss of generality [a—31| = minj«;<q4 |a—
B;|. Then on one hand

d
IT lo = 8] > | — B1/¢
i=1
and on the other hand
d d—1 ' d
[Tle=81<Y Jalla—pl <ed o
1=1 1=0 i=0

Comparing these inequalities we get the result.



The following Lemma is a immediate consequence of a theorem
of Akiyama, Brunotte, Peth6é and Thuswaldner (2005)

Lemma 7 For every € > 0 there exists Mg such that if |M| > Mg

then
A D \E([1-— VP <€

A1 (pg_l \ € (1 - ﬁﬁ)) <e.

The next Lemma can be proved similarly as Lemma 4.7. of [?7].

and



Lemma 8 For every € > 0 there exists Mg such that if |M| > Mg

then
| d



Proof of Theorem 2

Let M > 0 and put

W(x,s) ={y €R : [x —y|oo < 5/2} (x € R s € R)
and

Wa—1(M) = Uyep, W ((x), M™1).
Then we claim

M Vg ) = BN (1o (1)) (o)

Indeed, let x,y € By(M) such that x —y = e; for some j €
{2,...,d}. Then by Lemmata 4 and 5

V() — vkl < vk — P+ P(x)k — DY)k + D)k — (¥l
{ L4+0(%), f(Gk)=(@2d-1),0orj>2k=d—j+1

(+) ; otherwise.

<



Thus

MW@, MY W@, M) =0(;). (D

As x has at most 29 neighbors we get

M| U (W, MY N Wy, M) =o(
X,YEBd(M)
X7y

and the claim is proved.

|Bd(M)|>
Md



Now we are in the position to give lower estimate for A;_1(Dy_1).
Let x € By;(M) such that ¢¥(x) € £ (1 — \d/ﬁ) CDy 1. Letye

W (y(x), M~1). Then p((x)) < 1—{/5%; and as [¢(x) —¥|oo < 557
we get p(y) <1 by Lemma 6. Thus

U W(p(x), M~ 1) CDy_;. (12)
xeBy (M)

p(p(x))<1- {/ 54

Let e > 0 and M > Mg, where Mg is defined in Lemma 7. Then
the number of x € B;(M) such that 1 — {l% < p(yp(x)) <1is at
most O(M%1¢) by Lemma 7 and by (11). Combining this with
11 and 12 we obtain the desired lower bound

A1 (D) 2 B oy (13)




To prove an upper bound we construct for every
r=(ryg,...,72) € Dyj_1 and M large enough a vector
b= (by,...,by) € Z% such that ¥ (b) is lying near enough to r.

Indeed put b = x,(r) and consider

by bg—1 | bg b2 b3
’ 2 , e o o 7 2
b+ b+ b b2 b7

P(b) =

then we get

F() —rloe < 5+ 0 (5 15)

Applying now Lemma 4 we obtain

$(0) — tloe < [F(b) = tloc + [0(B) — F(B)]oo < 51+ 0 (<15 )



Thus by Lemma 6

d d d d
P () < p(r) + {57 <1+ {577

This means that if M is large enough then all but one roots

of P(X) = X4 —bp; X491 _ .. —b,; have absolute value at most
1+ dﬁ and one root is close to M. We have further
Dy1 C U W (p(x), M~ 1)
xcZ74
p(x)egg_1(1+ §/540)
= U wWe),MHu U W(p(x), M~ 1).
xeBy(M) xeZ4

Y(x)eEg_1 (14 §/5EINE)

Let again € > 0 and M > Mg, where Mg is defined in Lemma 8.



Then Lemma 8 and (11) implies that the number of x € Z% such

that ¢ (x) is lying in &;_1 (1 + \d/ﬁ) \D,_1 is at most O(M41¢),
thus
By(M)
Ad-1(Dg-1) < lMd_l | (1+¢)).
Comparing this inequality with (13) we obtain the first statement
of Theorem 2.




