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Introduction

Purpose: self-similar tiles T providing a tiling of the plane
with respect to a crystallographic group.

Question: when is T homeomorphic to a closed disk?

Results: criteria involving the configuration of the neighbors
of T in the tiling.
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Crystallographic tiling

If T is a compact set with T = T o, Γ a family of isometries of
R2 such that R2 =

⋃
γ∈Γ γ(T ) and the γ(T ) do not overlap,

we say that T tiles R2 by Γ.

Γ ≤ Isom(R2) is a crystallographic group if
Γ ' Z2 n {id, r2, . . . , rd} with r2, . . . , rd isometries of finite
order greater than 2.
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Crystallographic reptile

- Γ crystallographic group,

- g expanding affine map such that gΓg−1 ≤ Γ,

- D ⊂ Γ digit set (complete set of right coset representatives of
Γ/gΓg−1).

A crystallographic reptile with respect to (Γ,D, g) is a set
T ⊂ R2 such that T tiles R2 by Γ and

g(T ) =
⋃
δ∈D

δ(T ).
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An example of crystile

We consider

the group p3 = { aibjrk, i, j ∈ Z , k ∈ {0, 1, 2} } where

a(x, y) = (x + 1, y)
b(x, y) =

(
x + 1/2, y +

√
3/2

)
,

r = rot[0, 2π/3]

the digit set {id, ar2, br2},

the map g(x, y) =
√

3(y,−x).

Benôıt Loridant Crystiles



Intro Crystiles Graphs Criteria

An example of crystile

We consider

the group p3 = { aibjrk, i, j ∈ Z , k ∈ {0, 1, 2} } where

a(x, y) = (x + 1, y)
b(x, y) =

(
x + 1/2, y +

√
3/2

)
,

r = rot[0, 2π/3]

the digit set {id, ar2, br2},

the map g(x, y) =
√

3(y,−x).

Benôıt Loridant Crystiles



Intro Crystiles Graphs Criteria

An example of crystile

We consider

the group p3 = { aibjrk, i, j ∈ Z , k ∈ {0, 1, 2} } where

a(x, y) = (x + 1, y)
b(x, y) =

(
x + 1/2, y +

√
3/2

)
,

r = rot[0, 2π/3]

the digit set {id, ar2, br2},

the map g(x, y) =
√

3(y,−x).
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An example of crystile

Figure: Terdragon T defined by g(T ) = T ∪ ar2(T ) ∪ br2(T ).
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Digit representation

T is the union of its n-th level subpieces:

T =
⋃

δ1∈D g−1δ1(T )

=
⋃

δ1,δ2∈D g−1δ1g
−1δ2(T )

=
{
limn→∞ g−1δ1 . . . g−1δn(a), δj ∈ D

}
(a is any point of R2).

Therefore, each x ∈ T has an adress

x = (δ1 δ2 . . .) .
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Known results

[Gelbrich - 1994] Two crystiles (T ; Γ,D, g) and (T ′; Γ′,D′, g′)
are isomorphic if there is an affine bijection φ : T → T ′

preserving the pieces of all levels. There are at most finitely
many isomorphy classes of disk-like plane crystiles with k
digits (k ≥ 2).

[Luo, Rao, Tan - 2002] T connected self-similar tile with
T o 6= ∅ is disk-like whenever its interior is connected.

[Bandt, Wang - 2001] Criterion of disk-likeness for lattice tiles
in terms of the number of neighbors of the central tile.
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Neighbors

Set of neighbors: S := {γ ∈ Γ \ {id}, T ∩ γ(T ) 6= ∅}.

The boundary of T is:

∂T =
⋃
γ∈S

T ∩ γ(T ).
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Boundary graph

The boundary graph G(S) is defined as follows:

the vertices are the γ ∈ S,

there is an edge γ
δ1|δ′1−−−→ γ1 ∈ G(S) iff

γ g−1δ′1 = g−1δ1 γ1

with γ, γ1 ∈ S and δ1, δ
′
1 ∈ D.
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Boundary characterization

Theorem

Let δ1, δ2, . . . a sequence of digits and γ ∈ S. Then the following
assertions are equivalent.

x = (δ1 δ2 . . .) ∈ T ∩ γ(T ).
There is an infinite walk in G(S) of the shape:

γ
δ1|δ′1−−−→ γ1

δ2|δ′2−−−→ γ2
δ3|δ′3−−−→ . . . (1)

for some γi ∈ S and δ′i ∈ D.

Remark. The set of neighbors S and the boundary graph G(S)
can be obtained algorithmically for given data (Γ,D, g).
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Neighbor and Adjacent neighbor graphs

The neighbor graph of a crystallographic tiling is the graph
GN with
• vertices γ ∈ Γ
• edges γ − γ′ if γ(T ) ∩ γ′(T ) 6= ∅, i.e., γ′ ∈ γS.

Adjacent neighbors: γ, γ′ with γ(T ) ∩ γ′(T ) contains a point
of (γ(T ) ∪ γ′(T ))o. A denotes the set of adjacent neighbors
of id. It can be obtained with the help of G(S).
The adjacent neighbor graph of a crystallographic tiling is the
graph GA with
• vertices γ ∈ Γ
• edges γ − γ′ if γ(T ) and γ′(T ) are adjacent, i.e., γ′ ∈ γA.
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GA and GN for the p3 example

Figure: Adjacent neighbor graph for the Terdragon.
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GA and GN for the p3 example

Figure: GA and the neighbors of the identity.
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GA and GN for the p3 example

Figure: GA and the neighbors of the identity. In blue: the digits.
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General criterion of disk-likeness

Theorem (with Luo J. and J.-M. Thuswaldner)

Let T be a planar crystallographic reptile with respect to the group
Γ. Then T is disk-like iff the following three conditions hold:

(i) the adjacent graph GA is a connected planar graph,

(ii) the digit set D induces a connected subgraph in GA,

(iii) GN can be derived from GA by joining each pair of vertices in
the faces of GA.
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Criteria on the shape of the neighbor set

[Grünbaum, Shephard - 1987] There are finitely many possible
sets (S,A) such that a disk-like crystallographic tile admits
(S,A) as sets of neighbors and adjacent neighbors.

Reciprocal statement for crystallographic reptiles ?
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Lattice case

If F is a subset of S, the digit set D is said to be F-connected if
for every pair (δ, δ′) of digits there is a sequence

δ −−−−−→
δ−1δ1∈F

δ1 −−−−−→
δ−1
1 δ2∈F

δ2 −→ · · · −→ δn−1 −−−−−−→
δ−1
n−1δ′∈F

δ′

with δi ∈ D.

Theorem (Bandt, Wang - 2001)

Let T be a self-affine lattice plane tile with digit set D.

(1) Suppose that the neighbor set S of T has not more than six
elements. Then T is disk-like iff D is S-connected.

(2) Suppose that the neighbor set S of T has exactly the eight
elements {a±1, b±1, (ab)±1, (ab−1)±1}, where a and b denote
two independent translations. Then T is disk-like iff D is
{a±1, b±1}-connected.
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p2 case

A p2 group is a group of isometries generated by two independent
translations and a π-rotation.

Theorem (with Luo J.)

Let T be a crystile that tiles the plane by a p2-group and D the
corresponding digit set.

(1) Suppose that the neighbor set S of T has six elements. Then
T is disk-like iff D is S-connected.

(2) Suppose that the neighbor set S of T has exactly the seven
elements {b, b−1, c, bc, a−1c, a−1bc, a−1b−1c}, where a, b are
translations and c is a π-rotation. Then T is disk-like iff D is
{b, b−1, c, bc, a−1c}-connected.

(3) Similar results as (2) hold if S has 8 elements or 12 elements.
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Benôıt Loridant Crystiles



Intro Crystiles Graphs Criteria

Example for p2 case

Figure: g(x, y) = (y, 3x + 1), D = {id, b, c}.
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Open questions

17 planar crystallographic groups.

Other topological properties (fundamental group).
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