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The binomial distribution and its moments
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The binomial measure. Definitions and notations

Definition

(Okada, Sekiguchi, Shiota, 1995)
Let 0 < r < 1 and I = I0,0 = [0, 1],

In,j =
[ j

2n
,
j + 1

2n

)
, for j = 0, 1, . . . , 2n − 2, In,2n−1 =

[2n − 1

2n
, 1

]
,

for n = 1, 2, 3, . . . . The binomial measure µr is a probability measure on I
uniquely determined by the conditions

µr (In+1,2j) = rµr (In,j), µr (In+1,2j+1) = (1− r)µr (In,j),

for n = 0, 1, 2, . . . and j = 0, 1, . . . , 2n − 1.

In,j = elementary intervals of level n, n ∈ {1, 2, 3, . . . }, j ∈ {0, . . . , 2n − 1}
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The binomial measure. Definitions and notations

Notations

W = the set of all infinite words over the alphabet D = {0, 1}
Wm = the set of all words of length m (m ≥ 1) over the alphabet D.

For every word ω ∈ W, ω = ω1ω2 . . . ωn . . . we define its value

val(ω) =
∑
i≥1

ωi · 2−i .

Thus we assign to every infinite word ω = ω1ω2 . . . the binary
fraction 0.ω1ω2 . . . .

Analogously we define the value of any word of Wm
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Remark. In the case of choosing in a random way (with respect to µr ) a
word ω ∈ W, we have

P(ωk = 0) = P(ωk = 1) =
1

2
, for k = 1, 2, . . . ,

These probabilities depend neither on the parameter r nor on k.
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The moments of the binomial distribution

We study the moments of the function val with respect to the distribution
defined by µr .

Mn the moment of order n

Mn =
∑
ω∈W

µr (ω) · (val(ω))n.

Let
Mn

m=
∑

ω∈Wm

µr (ω) · (val(ω))n.

We have Mn =limm→∞Mn
m.

It is easy to verify that

val(dω) = d · 2−1 + 2−1 · val(ω).
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The moments of the binomial distribution

Notation: Wk
m = the set of words of Wm containing exactly k times the

character 0.
We have

Mm
n =

m∑
k=0

rk(1− r)m−k
∑

ω∈Wm
k

(val(ω))n.

By analysing the first character of the words occurring in the last sum we
get

Mm
n = r · 1

2n

m−1∑
k=0

rk(1− r)m−1−k
∑

ω∈Wk
m−1

(val(ω))n

+ (1− r) · 1

2n

m−1∑
k=0

rk(1− r)m−1−k
∑

ω∈Wk
m−1

(1 + val(ω))n

=
1

2n
Mm−1

n + (1− r) · 1

2n

n−1∑
j=0

(
n

j

)
Mm−1

j .
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Theorem

The moments of the binomial distribution µr satisfy the relations:

M0 = 1,

Mn =
r

2n
Mn +

1− r

2n

n∑
j=0

(
n

j

)
Mj , for all integers n ≥ 1.

Remarks

One can use this recursion in order to compute a list of the first
moments M1, M2, M3, . . . .

From above one can express Mn with the help of the previous
moments:

Mn =
1− r

2n − 1

n−1∑
j=0

(
n

j

)
Mj .
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The asymptotics of the moments Mn

We define the exponential generating function

M(z) =
∑
n≥0

Mn
zn

n!
.

We obtain
M(z) = r ·M( z

2) + (1− r) ·M( z
2) · e

z
2 .

(The above functional equation could also have been derived by using the
self-similar properties of µr .)
The Poisson transformed function M̂(z) = M(z) · e−z satisfies

M̂(z) = r · M̂( z
2) · e−

z
2 + (1− r) · M̂( z

2).
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The asymptotics of the moments Mn

Herefrom, by iteration:

M̂(z) =
∏
k≥1

(
r · e−

z

2k + (1− r)
)
.

As we are looking for the asymptotics of the moments Mn we are going to
study the behaviour of M̂(z) for z →∞.

This is based on the fact that Mn ∼ M̂(n).

Justification: by using depoissonisation.

The basic idea: extract the coefficients Mn from M(z) using Cauchy’s
integral formula and the saddle point method.
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The asymptotics of the moments Mn

This leads in our applications to an approximation

Mn = M̂(n)
(
1 +O(

1

n
)
)
,

with more terms being available in principle.
We rewrite

M̂(z) = r · M̂( z
2) · e−

z
2 + (1− r) · M̂( z

2).

as
M̂(z) = (1− r) · M̂( z

2) + R(z),

where R(z) = r · M̂( z
2) · e−

z
2 is considered to be an auxiliary function

which we treat as a known function.
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The asymptotics of the moments Mn

We compute the Mellin transform M̂∗(s) of the function M̂(z) . We get

M̂∗(s) = (1− r) · 2s · M̂∗(s) + R∗(s) =
R∗(s)

1− (1− r) · 2s
.

Now the function M̂(z) can be obtained by applying the Mellin inversion
formula, namely

M̂(z) =
1

2πi

∫ c+i∞

c−i∞
M̂∗(s) · z−sds =

1

2πi

∫ c+i∞

c−i∞

R∗(s)

1− (1− r) · 2s
· z−sds,

where 0 < c < log2
1

1−r .
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The asymptotics of the moments Mn

We shift the integral to the right and take the residues with negative sign
into account in order to estimate M̂(z).
The function under the integral has simple poles at

sk = log2
1

1− r
+

2kπi
log 2

,

k ∈ Z. For these the residues with negative sign are

1

log 2
R∗

(
log2

1

1− r
+

2kπi
log 2

)
z− log2

1
1−r

− 2kπi
log 2 ,

with R∗(s) =
∫∞
0 rM̂( z

2) · e−
z
2 · zs−1dz .
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For k = 0 the residue with negative sign is, using the definition of R(z),

1

log 2
· z log2(1−r)

∫ ∞

0
rM̂(

z

2
) · e−

z
2 · z log2

1
1−r

−1dz .

This term plays an important role in the asymptotic behaviour of the nth
moment Mn of the binomial distribution. In order to get this one collects
all mentioned residues into a periodic function.
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Theorem

The nth moment Mn of the binomial distribution µr admits the
asymptotic estimate

Mn =Φ(− log2 n) · nlog2(1−r)
(
1 +O

(1

n

))
,

for n →∞,
where Φ(x) is a periodic function having period 1 and known Fourier
coefficients. The mean (zeroth Fourier coefficient) of Φ is given by the
expression

1

log 2

∫ ∞

0
rM̂(

z

2
) · e−

z
2 · z log2

1
1−r

−1dz .
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Remark. One can compute this integral numerically by taking for M̂( z
2)

the first few terms of its Taylor expansion. These can be found from the
recurrence for the numbers Mn.
The integral in the expresion of the zeroth Fourier coefficient can be
written as∫ ∞

0
rM̂(

z

2
) · e−

z
2 · z log2

1
1−r

−1dz = r

∫ ∞

0
e−z

∑
k≥0

Mk
zk

2kk!
z log2

1
1−r

−1dz

= r
∑
k≥0

Mk

2kk!
· Γ

(
k + log2

1

1− r

)
.

This series is well suited for numerical computations. For example, let
r = 0.6, then M100 = 0.002453 . . . and the value predicted in the Theorem
(without the oscillation) is 0.002491 . . . .
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Generalisation: the multinomial distribution
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The Gray code distribution and its
moments
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The Gray code distribution. Definition

Definition

(Kobayashi) Let I = I0,0 = [0, 1] and

In,j =
[ j

2n
,
j + 1

2n

)
, for j = 0, 1, . . . , 2n − 2, In,2n−1 =

[2n − 1

2n
, 1

]
,

for n = 1, 2, 3, . . . .
For each 0 < r < 1 there exists a unique probability measure µ̃r on I such
that, for j = 0, 1, . . . , 2n − 1 and n = 0, 1, 2, . . . ,

µ̃r (In+1,2j) =

{
r µ̃r (In,j) j : even,

(1− r)µ̃r (In,j) j : odd,

µ̃r (In+1,2j+1) =

{
(1− r)µ̃r (In,j) j : even,

r µ̃r (In,j) j : odd.

We call µ̃r the Gray code measure.
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The moments of the Gray code distribution

We have
Mn =

∑
ω∈W

µ̃r (ω) · (val(ω))n

and
Mn = lim

m→∞
Mm

n ,

where
Mm

n =
∑

ω∈Wm

µ̃r (ω) · (val(ω))n.
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We are looking for a recurrence relation between the moments of different
orders.
Idea: study first the recursive behaviour of the moments of finite words
Mm

n .

Reading a word ω ∈ Wm, ω = ω1ω2 . . . ωm

If ω1 = 0 then val(ω) lies in the left elementary interval of level 1.
If ω1 = 1 then val(ω) lies in the right elementary interval of level 1.

Reading ω2 indicates for val(ω) the interval of level 2 inside the
interval of level 1 indicated by ω1.
ω2 = 0 −→ left interval, ω2 = 1 −→ right interval.

ωk indicates the position of the interval of level k (k ≤ m) that
contains val(ω).
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Remark. A Markov chain model of the problem
Let us now consider the Markov chain with state space X = {0, 1} = D
and transition probabilities

p(x , y) =

{
r , x=y ,

1− r , x 6=y ,

where x , y ∈ {0, 1}.
Generating finite random words ω (with respect to the distribution µ̃r )
over the alphabet D = {0, 1} is equivalent to the random walk described
by the above Markov chain:
X (k) indicates the k-th digit of ω, i.e., X (k) = ωk , k ≥ 1.

We have, for k = 1, 2, . . . :

P(ωk = 0) = 1
2

(
(2r − 1)k + 1

)
, P(ωk = 1) = 1

2

(
1− (2r − 1)k

)
.
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Some more definitions and notations

For any ω = ω1ω2 . . . ωm ∈ Wm,

ω := ω1ω2 . . . ωm ∈ Wm, with ωk = 1⊕ ωk , k = 1, 2, . . . ,m.

Analogously, for ω ∈ W.

For any integer k ≥ 0, k =
∑m

j=1 εj(k) · 2j , εj ∈ {0, 1}, j = 1, 2 . . . , m
and 0 < r < 1

πr ,m(k) := rm−s̃(k) · (1− r)s̃(k),

s̃(k) = the number of digits 1 in the Gray code g(k) of k

the Gray digital sum (Kobayashi, 2002).

For any integer m ≥ 1 and any word ω ∈ Wm we define

πr (ω) := πr ,m(2m · val(ω)).
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Remarks.

(Induction) For any positive integer m, any integer 0 ≤ k ≤ 2m − 1
and any 0 < r < 1,

µ̃r (Im,k) = πr ,m(k),

i.e., πr ,m(k) is the probability that the starting block ω1ω2 . . . ωm of
a random word ω ∈ W satisfies

ωj = εj(k) ∈ {0, 1} for j = 1, 2, . . . ,m, where k =
m∑

j=1

εj(k) · 2j .

With the above notations,

µ̃r (ω1ω2 . . . ωm) = πr (ω), for any ω = ω1ω2 . . . ωm ∈ Wm.
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The moments of the Gray code distribution

We have

Mm
n =

∑
ω∈Wm

πr (ω) · (val(ω))n

=
r

2n

∑
ω′∈Wm−1

πr (ω
′) · (val(ω′))n +

1− r

2n

∑
ω′∈Wm−1

πr (ω
′) · (1 + val(ω′))n
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Moments of the Gray code distribution

Let φ be the bijection φ : W →W, φ(ω) = ω and for any m ≥ 1,
φm the obvious (bijective) restriction φm : Wm →Wm.

φ(φ(ω)) =ω, for all ω ∈ W,
φm(φm(ω)) = ω, for all ω ∈ Wm, and m ≥ 1.

The moments Mn and M
m
n of the composed function val ◦ φ with

respect to the Gray code distribution:

M
m
n =

∑
ω∈Wm

µ̃r (ω) · (val(φ(ω)))n =
∑

ω∈Wm

πr (ω) · (val(ω))n,

Mn =
∑
ω∈W

µ̃r (ω) · (val(φ(ω)))n =
∑
ω∈W

µ̃r (ω) · (val(ω))n.
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The moments of the Gray code distribution

Theorem

The moments of the Gray distribution µ̃r satisfy the relations:
M0 = M0 = 1 and

Mn =
r

2n
Mn +

r

2n

n∑
j=0

(
n

j

)
M j ,

Mn =
r

2n
Mn +

r

2n

n∑
j=0

(
n

j

)
Mj ,

for all integers n ≥ 1 and r = 1− r .

Remark. One can use these recursion relations in order to compute a list
of the first few moments M1,M2,. . . , and M1,M2,. . . .
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The asymptotics of the moments Mn

The exponential generating functions

A(z) =
∑
n≥0

Mn
zn

n!
, B(z) =

∑
n≥0

Mn
zn

n!
.

From the above recursions we get

A(z) = r · A(
z

2
) + r · e

z
2 · B(

z

2
), B(z) = r · B(

z

2
) + r · e

z
2 · A(

z

2
),

and for the Poisson transformed functions,

Â(z) = A(z) · e−z and B̂(z) = B(z) · e−z ,

Â(z) = r · B̂(
z

2
) + r · e−

z
2 · Â(

z

2
), B̂(z) = r · Â(

z

2
) + r · e−

z
2 · B̂(

z

2
).
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The asymptotics of the moments Mn

Theorem

The nth moment Mn of the Gray code distribution µ̃r admits the
asymptotic estimate

Mn = Φ(− log4 n) · nlog4(r r)
(
1 +O(

1

n
)
)
,

for n →∞, where Φ(x) is a periodic function having period 1 and known
Fourier coefficients. The mean (zeroth Fourier coefficient) of Φ is given by
the expression

1

log 4

∫ ∞

0

(
r2 · e−

z
4 · B̂(

z

4
) + r · e−

z
2 · Â(

z

2
)
)
· z log4

1
r r
−1dz .
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For numerical computations, one cand use the equivalent expression

1

log 4

(
r2

√
r r

∑
k≥0

Mk

2kk!
· Γ

(
k + log4

1

r r

)
+ r ·

∑
k≥0

Mk

2kk!
Γ
(
k + log4

1

r r

))
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