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Recognition of arithmetic discrete planes

Problem

Given a set of points in Z9, does there exist a standard arithmetic discrete plane that
contains them?
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Arithmetic discrete planes
Let (X,1%), (X,2*), (X,3*) be the following faces:

& & &
x x
e, e, e,
€ € €

A standard arithmetic discrete plane or stepped plane is defined as

Definition

Pa,p ={(%,i") [ 0 < (%,d) + p < (&,d)}.
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Discrete lines and Sturmian words

One can code a standard arithmetic discrete line (Freeman code) over the two-letter
alphabet {0,1}. One gets a Stumian word (up)pen € {0, 1}Y

0100101001001010010100100101

How to recognize that a finite word is Sturmian?
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Finite Sturmian words

0110110101101101

We consider the substitutions

00:0—0, 0p: 1— 10
01:0—01, 01:1—1

One has
0110110101101101 = 07(0101001010)

0101001010 = 5(011011)
011011 = 07(0101)
0101 = 7(00)

~~ Continued fractions and Ostrowski numeration system

Continued fractions
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A classical recognition problem in discrete geometry

in connection with
e Geometric representations, Rauzy fractals, tilings

e Multidimensional continued fractions and S-adic systems
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A classical recognition problem in discrete geometry

in connection with
e Geometric representations, Rauzy fractals, tilings

e Multidimensional continued fractions and S-adic systems

We need a multidimensional notion of

e Substitutions
~» Arnoux-Ito-Ei's formalism for unimodular morphisms of the free group
e Continued fraction algorithm
~~ Brun's algorithm

e Words
~~ Stepped surfaces



Let o be a substitution over A.

ubstitution
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Substitution

Let o be a substitution over A.
Example:
o(1) =12, 0(2) =13, o(3) =1.
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Substitution

Let o be a substitution over A.
The incidence matrix My of o is the matrix defined by:

Mo = (lo()1i)i jye.a2 »

where |o(j)]; is the number of occurrences of the letter i in o(j).
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Substitution

Let o be a substitution over A.

Unimodular substitution

A substitution o is unimodular if det M, = +1.

Abelianization

Let d stand for the cardinality of A. Let T: A* — N9 be the Parikh mapping:

T(w) = t(Iwl1, w2, -, [wla).
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Generalized substitution

Generalized substitution [Arnoux-Ito]

Let o be a unimodular substitution. We call generalized substitution the following
tranformation acting on the faces (X, i*) defined by:

orxin=U U M (z=T1P), k).

k€A P, o(k)=PiS

N

Ty

& =N
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Stepped surface

Definition
A stepped surface (also called functional discrete surface) is defined as a union of

pointed faces such that the orthogonal projection onto the diagonal plane
x4+ y + z =0 induces an homeomorphism from the stepped surface onto the diagonal

plane.
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Definition
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Stepped surface

Definition

A stepped surface (also called functional discrete surface) is defined as a union of
pointed faces such that the orthogonal projection onto the diagonal plane

X + y + z = 0 induces an homeomorphism from the stepped surface onto the diagonal
plane.

Recognition [Jamet]

It is possible to recognize whether a set of points in Z9 is contained in a stepped
surface by considering a finite neighbour of each point.
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Action on a plane

Theorem [Arnoux-Ito, Fernique]

Let o be a unimodular substitution. Let & € Ri be a nonzero vector. The generalized
substitution ©F maps without overlaps the stepped plane Pz, , onto Pry g ,-




Generalized substitutions
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Let o be a unimodular subtitution. The generalized substitution ©%

overlaps on stepped surfaces.
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Tiling

Definition

Let o be a unimodular substitution. A stepped surface is said to be o-tilable if it is a
union of translates of ©} (0, i*).

Question: Can we desubstitute a o-tilable stepped surface?

N—-©@ ‘
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Desubstitution

We want to desubstitute a stepped surface according to ©}.

Let o be an invertible substitution. Let S be a o-tilable stepped surface. There exists
a unique stepped surface S’ such that

e1(s) =Ss.
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Desubstitution

We want to desubstitute a stepped surface according to ©}.

Let o be an invertible substitution. Let S be a o-tilable stepped surface. There exists
a unique stepped surface S’ such that

e1(s) =Ss.

Idea of the proof:
© ©;,=0,00;
@ O_,(S) is a stepped surface.
© ©F_(S) is thus an antecedent of S under the action of ©7.
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Desubstitution

Property

Let o be a unimodular morphism of the free group. Let S be a o-tilable stepped
surface. Then G:_I(S) is a stepped surface.

We use the following fact:

Let o be a unimodular morphism of the free group. Let @ € Ri be a nonzero vector
such that

‘*Myd > 0.

Then, ©F maps without overlaps the stepped plane Pg , onto Pry_ g, ,-
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Desubstitution

Property

Let o be a unimodular morphism of the free group. Let S be a o-tilable stepped
surface. Then G:_I(S) is a stepped surface.

We use the following fact:

Let o be a unimodular morphism of the free group. Let @ € Ri be a nonzero vector
such that

‘*Myd > 0.

Then, ©F maps without overlaps the stepped plane Pg , onto Pry_ g, ,-

The stepped plane Py, , is o-tilable iff

t —
M, _1a > 0.
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Brun's algorithm (d = 2)

We consider the following transformation acting on [0, 1]

({1/a}, L) ifa>p
T(a,ﬂ)={ (5.{1/8}) otherwise.

For all n € N, we set (an, Bn) = T"(ev, B).

One has (1, an, Bn) < Ba,,en(1, @nti, Bnt1) with

1/an],1) if an > Bn
(an,en) = { &1;/3”{2)) otherwise,

) and B,p = (

with

o O
= O O
= O w

o = O

o O

Continued fractions
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Continued fraction algorithm

One thus gets
o L By B Bp—1 , B,
a=aday—dad — ... — ap —

where B, € GL(d + 1,N).

Convergents

(1,&) X Bo X ... X Bn(l,o_fn+1)

(gn, Bn) o B x...X Ba(1,0).

Continued fractions
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Continued fraction algorithm

One thus gets
o L By B Bp—1 , B,
a=aday—dad — ... — ap —

where B, € GL(d + 1,N).

Convergents

(1,55') X Bo X ... X Bn(l,o_fn+1)

(gn, Bn) o B x...X Ba(1,0).

e Unimodular algorithm

e Weak convergence (convergence of the type |a — pn/qn|)



Continued fractions

Arithmetics Geometry
d-uple @ € [0, 1]¢ stepped plane P &)
(1,dn) = Bn(1, &nt1) Pu,an = ©5,(P,a,.1))
with rB,, incidence matrice of oy
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Arithmetics Geometry
d-uple @ € [0, 1]¢ stepped plane P(1 )
(1,dn) = Bn(1,dnt1) Pa,an) = ©5,(Pa,an1))
with B, incidence matrice of oy
(114, 21) o Bra(1, 3

’38’ 19)
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Arithmetics

Geometry

d-uple & € [0,1]¢

(17 &ﬂ) = B"(L 07n+1)

stepped plane P(l,o?)

Pa,an = 95,(Pa,d,1))

with tB,, incidence matrice of oy

(17 %) 1729) x Bl,1(17 %7 %)
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Arithmetics Geometry
d-uple & € [0,1]¢
(1’ &n) = Bn(17 d’I’H»l)

stepped plane 73'(1,07)

Pa,an = 95,(Pa,d,1))

with tB,, incidence matrice of oy

(1’ %? %) X Bl,2(17 %a %)
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Arithmetics Geometry
d-uple & € [0,1]¢
(1’ &n) = Bn(17 d’I1+1)

stepped plane 73(1,07)

Pa,an = 95,(Pa,d,1))

with tB,, incidence matrice of oy

(1’ %? %) X Bl,1(17 %a %)
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Arithmetics

Geometry

d-uple & € [0,1]¢

(1a &ﬂ) = B"(L 07n+1)

stepped plane 73(1,07)

Pa,an = 95,(Pa,d,1))

with tB,, incidence matrice of oy

(1, 0, 1) o B1,2(17 0,0)
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Choice of the substitution

Property
Let o be a unimodular morphism of the free group. The stepped plane Py , is
o-tilable iff

M, -1d > 0.

This provides a discrete version of Brun's algorithm.

- i oo
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Choice of the substitution

Property
Let o be a unimodular morphism of the free group. The stepped plane Py , is
o-tilable iff

M, -1d > 0.

This provides a discrete version of Brun's algorithm.

NN PN



Discrete planes 1D case Generalized substitutions Continued fractions

Choice of the substitution

Property
Let o be a unimodular morphism of the free group. The stepped plane Py , is
o-tilable iff

M, -1d > 0.

This provides a discrete version of Brun's algorithm.

NN



Discrete planes 1D case Generalized substitutions Continued fractions

Choice of the substitution

Property
Let o be a unimodular morphism of the free group. The stepped plane Py , is
o-tilable iff

M, -1d > 0.

This provides a discrete version of Brun's algorithm.

NN - N
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Choice of the substitution

Property
Let o be a unimodular morphism of the free group. The stepped plane Py , is
o-tilable iff

M, -1d > 0.

This provides a discrete version of Brun's algorithm.

N f g9 >N
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Choice of the substitution

Property
Let o be a unimodular morphism of the free group. The stepped plane Py , is
o-tilable iff

M, -1d > 0.

This provides a discrete version of Brun's algorithm.

nﬂr R
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Conclusion

If a stepped surface can be desubstituted infinitely many times according to Brun's
algorithm, then it is a stepped plane with parameters given by the corresponding
Brun’s expansion.

Further work
o Higher codimensions (Penrose tilings)
e Finite case
e Multidimensional Ostrowski numeration based on Brun's algorithm

e Rauzy fractals in the S-adic case
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