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Recognition of arithmetic discrete planes

Problem

Given a set of points in Zd , does there exist a standard arithmetic discrete plane that
contains them?
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Arithmetic discrete planes
Let (~x , 1∗), (~x , 2∗), (~x , 3∗) be the following faces:
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Definition

A standard arithmetic discrete plane or stepped plane is defined as

P~α,ρ = {(~x , i∗) | 0 ≤ 〈~x , ~α〉+ ρ < 〈~ei , ~α〉}.
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Discrete lines and Sturmian words

One can code a standard arithmetic discrete line (Freeman code) over the two-letter
alphabet {0, 1}. One gets a Stumian word (un)n∈N ∈ {0, 1}N

0100101001001010010100100101

Question

How to recognize that a finite word is Sturmian?
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Finite Sturmian words

0110110101101101

We consider the substitutions

σ0 : 0 7→ 0, σ0 : 1 7→ 10

σ1 : 0 7→ 01, σ1 : 1 7→ 1

One has
01 1 01 1 01 01 1 01 1 01 = σ1(0101001010)

0 10 10 0 10 10 = σ0(011011)

01 1 01 1 = σ1(0101)

01 01 = σ1(00)

 Continued fractions and Ostrowski numeration system
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A classical recognition problem in discrete geometry

in connection with

• Geometric representations, Rauzy fractals, tilings

• Multidimensional continued fractions and S-adic systems

We need a multidimensional notion of

• Substitutions

 Arnoux-Ito-Ei’s formalism for unimodular morphisms of the free group

• Continued fraction algorithm

 Brun’s algorithm

• Words
 Stepped surfaces
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Substitution

Let σ be a substitution over A.
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Substitution

Let σ be a substitution over A.
Example:

σ(1) = 12, σ(2) = 13, σ(3) = 1.
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Substitution

Let σ be a substitution over A.
The incidence matrix Mσ of σ is the matrix defined by:

Mσ = (|σ(j)|i )(i,j)∈A2 ,

where |σ(j)|i is the number of occurrences of the letter i in σ(j).
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Substitution

Let σ be a substitution over A.

Unimodular substitution

A substitution σ is unimodular if det Mσ = ±1.

Abelianization

Let d stand for the cardinality of A. Let ~l : A? → Nd be the Parikh mapping:

~l(w) = t(|w |1, |w |2, · · · , |w |d ).
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Generalized substitution

Generalized substitution [Arnoux-Ito]

Let σ be a unimodular substitution. We call generalized substitution the following
tranformation acting on the faces (~x , i∗) defined by:

Θ∗
σ(~x , i∗) =

[
k∈A

[
P, σ(k)=PiS

(M−1
σ

“
~x −~l(P)

”
, k∗).

Θ
∗

Θ

Θσ

∗

σ

∗

Θσ

∗

σ
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Stepped surface

Definition

A stepped surface (also called functional discrete surface) is defined as a union of
pointed faces such that the orthogonal projection onto the diagonal plane
x + y + z = 0 induces an homeomorphism from the stepped surface onto the diagonal
plane.
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Stepped surface

Definition

A stepped surface (also called functional discrete surface) is defined as a union of
pointed faces such that the orthogonal projection onto the diagonal plane
x + y + z = 0 induces an homeomorphism from the stepped surface onto the diagonal
plane.

Recognition [Jamet]

It is possible to recognize whether a set of points in Zd is contained in a stepped
surface by considering a finite neighbour of each point.
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Action on a plane

Theorem [Arnoux-Ito, Fernique]

Let σ be a unimodular substitution. Let ~α ∈ Rd
+ be a nonzero vector. The generalized

substitution Θ∗
σ maps without overlaps the stepped plane P~α,ρ onto PtMσ~α,ρ.

Θ∗
σ



Discrete planes 1D case Generalized substitutions Continued fractions

Theorem [Arnoux-B.-Fernique-Jamet 2007]

Let σ be a unimodular subtitution. The generalized substitution Θ∗
σ acts without

overlaps on stepped surfaces.

Θ
∗

σ
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Tiling

Definition

Let σ be a unimodular substitution. A stepped surface is said to be σ-tilable if it is a
union of translates of Θ∗

σ(~0, i∗).

Question: Can we desubstitute a σ-tilable stepped surface?
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Desubstitution

We want to desubstitute a stepped surface according to Θ∗
σ .

Theorem

Let σ be an invertible substitution. Let S be a σ-tilable stepped surface. There exists
a unique stepped surface S′ such that

Θ∗
σ(S′) = S.

Idea of the proof:

1 Θ∗
σ◦µ = Θ∗

µ ◦Θ∗
σ

2 Θ∗
σ−1 (S) is a stepped surface.

3 Θ∗
σ−1 (S) is thus an antecedent of S under the action of Θ∗

σ .
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Desubstitution

Property

Let σ be a unimodular morphism of the free group. Let S be a σ-tilable stepped
surface. Then Θ∗

σ−1 (S) is a stepped surface.

We use the following fact:

Fact

Let σ be a unimodular morphism of the free group. Let ~α ∈ Rd
+ be a nonzero vector

such that
tMσ~α ≥ 0.

Then, Θ∗
σ maps without overlaps the stepped plane P~α,ρ onto PtMσ~α,ρ.

The stepped plane P~α,ρ is σ-tilable iff

tMσ−1 ~α ≥ 0.
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Desubstitution

Property

Let σ be a unimodular morphism of the free group. Let S be a σ-tilable stepped
surface. Then Θ∗
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Brun’s algorithm (d = 2)

We consider the following transformation acting on [0, 1]2

T (α, β) =

(
({1/α}, β

α
) if α ≥ β

(α
β

, {1/β}) otherwise.

For all n ∈ N, we set (αn, βn) = T n(α, β).
One has (1, αn, βn) ∝ Ban,εn (1, αn+1, βn+1) with

(an, εn) =


(b1/αnc, 1) if αn ≥ βn

(b1/βnc, 2) otherwise,

with

Ba,1 =

0@ a 1 0
1 0 0
0 0 1

1A and Ba,2 =

0@ a 0 1
0 1 0
1 0 0

1A
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Continued fraction algorithm

One thus gets

~α = ~α0
B0−→ ~α1

B1−→ . . .
Bn−1−→ ~αn

Bn−→ . . .

where Bn ∈ GL(d + 1, N).

Convergents

(1, ~α) ∝ B0 × . . .× Bn(1, ~αn+1)

(qn, ~pn) ∝ B0 × . . .× Bn(1,~0).

• Unimodular algorithm

• Weak convergence (convergence of the type |α− pn/qn|)
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Arithmetics Geometry

d-uple ~α ∈ [0, 1]d stepped plane P(1,~α)

(1, ~αn) = Bn(1, ~αn+1) P(1,~αn) = Θ∗
σn

(P(1,~αn+1))

with t Bn incidence matrice of σn
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Arithmetics Geometry

d-uple ~α ∈ [0, 1]d stepped plane P(1,~α)

(1, ~αn) = Bn(1, ~αn+1) P(1,~αn) = Θ∗
σn

(P(1,~αn+1))

with t Bn incidence matrice of σn

(1, α0, β0) = (1, 11
14

, 19
21

)
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Arithmetics Geometry

d-uple ~α ∈ [0, 1]d stepped plane P(1,~α)

(1, ~αn) = Bn(1, ~αn+1) P(1,~αn) = Θ∗
σn

(P(1,~αn+1))

with t Bn incidence matrice of σn

(1, 11
14

, 19
21

) ∝ B1,2(1, 33
38

, 2
19

)
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Arithmetics Geometry

d-uple ~α ∈ [0, 1]d stepped plane P(1,~α)

(1, ~αn) = Bn(1, ~αn+1) P(1,~αn) = Θ∗
σn

(P(1,~αn+1))

with t Bn incidence matrice of σn

(1, 33
38

, 2
19

) ∝ B1,1(1, 5
33

, 4
33

)
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Arithmetics Geometry

d-uple ~α ∈ [0, 1]d stepped plane P(1,~α)

(1, ~αn) = Bn(1, ~αn+1) P(1,~αn) = Θ∗
σn

(P(1,~αn+1))

with t Bn incidence matrice of σn

(1, 5
33

, 4
33

) ∝ B6,1(1, 3
4
, 4

5
)
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Arithmetics Geometry

d-uple ~α ∈ [0, 1]d stepped plane P(1,~α)

(1, ~αn) = Bn(1, ~αn+1) P(1,~αn) = Θ∗
σn

(P(1,~αn+1))

with t Bn incidence matrice of σn

(1, 3
4
, 4

5
) ∝ B1,2(1, 3

4
, 1

4
)
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Arithmetics Geometry

d-uple ~α ∈ [0, 1]d stepped plane P(1,~α)

(1, ~αn) = Bn(1, ~αn+1) P(1,~αn) = Θ∗
σn

(P(1,~αn+1))

with t Bn incidence matrice of σn

(1, 3
4
, 1

4
) ∝ B1,1(1, 1

3
, 1

3
)
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Arithmetics Geometry

d-uple ~α ∈ [0, 1]d stepped plane P(1,~α)

(1, ~αn) = Bn(1, ~αn+1) P(1,~αn) = Θ∗
σn

(P(1,~αn+1))

with t Bn incidence matrice of σn

(1, 1
3
, 1

3
) ∝ B3,1(1, 0, 1)
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Arithmetics Geometry

d-uple ~α ∈ [0, 1]d stepped plane P(1,~α)

(1, ~αn) = Bn(1, ~αn+1) P(1,~αn) = Θ∗
σn

(P(1,~αn+1))

with t Bn incidence matrice of σn

(1, 0, 1) ∝ B1,2(1, 0, 0)
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Choice of the substitution

Property

Let σ be a unimodular morphism of the free group. The stepped plane P~α,ρ is
σ-tilable iff

tMσ−1 ~α ≥ 0.

This provides a discrete version of Brun’s algorithm.
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Conclusion

Theorem

If a stepped surface can be desubstituted infinitely many times according to Brun’s
algorithm, then it is a stepped plane with parameters given by the corresponding
Brun’s expansion.

Further work

• Higher codimensions (Penrose tilings)

• Finite case

• Multidimensional Ostrowski numeration based on Brun’s algorithm

• Rauzy fractals in the S-adic case
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