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Computer Arithmetic

Compromise: Heart: Approaches:
> Speed » Number » Theory
» Accuracy representations > Software
» Cost > Associated » Hardware

algorithms




Numeration and Computer Arithmetic 3/31

Contents

Function Evaluation

Redundant Number Systems

Number Systems for Modular Arithmetic
Conclusion

Annexes



e
Numeration and Computer Arithmetic 4/31

[ Function Evaluation

Function Evaluation
an example of numeration
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L Function Evaluation

Briggs Algorithm (1561-1630)

» Evaluation of the logarithm, constructions of the first tables
(15 decimal digits, 1624).

» In radix 2: digits dy = —1,0, 1, such that for a given x we
have

n
<[Ja+d2 ¥ ~1
k=1
» The logarithm of x is

n

In(x) ~ — Z In(1 4 dk275)

k=1
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L Function Evaluation

CORDIC Algorithm (COrdinate Rotation Dlgital
Computer, VOLDER 1959)

Basic step d, € {—1,1} (sign of z).

Xnt1 = Xp— dpyn2™" e !

Yne1 = Yt dpxp2™=" ¢ 3
_ -n :

Zny1 = Zp — dparctan(27") -

For cosine and sine:

x0=1,y0=0,20 = 0(= Y5 dnarctan(2™"))
Constant factor

K = Hiio 142721 =1.646760...
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L Function Evaluation

Complex algorithm (BKM 1993)

Basic step of the complex algorithm:

E}+1 ::E}(1-+-dk2_k)
Lyt ::Lk-—ln(1-+-dk2_k)
with d, = d + id,’;, and dy, d,’; =-1,0,1.
Two evaluation modes

» L-mode : B — 1
: "L, — Li+In(E)
L, — O
» E-mode : E, — Eeb
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L Function Evaluation

n n

1 . .
= Tl +d2) = Ly =S In(1 + di2~') = In(E1)

LIRMM
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[ Redundant Number Systems

Redundant Number Systems
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Avizienis (1961)

» Redundant Number Systems
Signed digits: x; € {—a, ..., —1,0, 1, ..., a} Radix 8 with
a<pg-1

» Properties

» If 2a+1 > 3, then each mteger has at Ieast one representation.
An integer X, with —aB— <X < aﬁ— admits a unique
representation

n—1

X=> xf withx €{-a---101,..., 3}
i=0

» If 2a > G+ 1, then we have a carry free algorithm.

» Borrow-save (Duprat, Muller 1989): extension to ra@if ume

uuuuuuuuuuuuuuuuuuu
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Example: radix 10, a =9

)

235042 (= —164138)
+ 46167 (= 46047)
011110 (= ¢t)
271001 (= w

(

282111 (= s = —118091)
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Properties of the signed digits redundant systems

» Advantages:

Constant time carry-free addition

Large radix: parallelisation

Small radix: fast circuits

Increasing of the performances of the algorithms based on the
addition

» Drawbacks: comparisons, sign...

vV vyVvYyy
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Non-Adjacent Form

» This representation is inspired from Booth recoding (1951)
used in multipliers.

» Definition of NAF,, recoding: (Reitwiesner 1960) Let k be

an integer and w > 2. The non-adjacent form of weight w of
-1

k is given by k = k2" where |ki| < 2%~ ki_1 # 0 and
i=0
each w-bit word contains at most one non-zero digit.
1. For a given k, NAF, (k) is unique.
2. For a given w > 2, the length of NAF,, (k) is at most equal to
the length of k plus one.
. The average density of non-zero digits is 1/(w + 1).

i
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NAF,, Examples

We consider k = 31415592.

k= 1
NAFy(k) = 10
NAF3(k) = 10
NAFy(k) = 10
NAFs(k) =
NAFg(k) =

1101
0010
0010
0010
150
150

1111
0000
0001
0000
0000
0000

0101
1010
0030
0050
0050
1000

1101

0101

0010

0003

0003
00170

0010
0010
0300
0000
0000
0000

1000
1000
3000
5000
5000
27000
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L Number Systems for Modular Arithmetic

Number Systems for Modular Arithmetic
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LNumber Systems for Modular Arithmetic

Lattices and Modular Systems

» Number system: radix 5 and a set of digits {0, ..., — 1}.

n—1
0 <A< p3"is expanded as: A = Z aif3'.
i=0
» We denote by P the modulo, with P < 3",

n—1

A" (mod P) = Ze,ﬂi with ¢; € {0, ..., — 1}
i=0

» A modular operation (for example: a modular multiplication):
1. Polynomial operation: W(X) = A(X) & B(X)
n—1

2. Polynomial reduction : V(X) = W(X) mod (X" — Ze,-X")
i=0
3. Coefficient reduction : M(X) = Reductcoeff( V(X))% ume
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Lattices and Modular Systems

Lattice approach

In a classical system " Reductcoeff’ is equivalent to a combination
of the carry propagation and the modular reduction:

-5 1 .. 0 0O -6 1 0 0

0 -8 .. 0 0 0 -8 .. 0 0

) . . «— lattice . . . . .
sublattice — :

0 0 -0 0 0 - 1
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LNumber Systems for Modular Arithmetic

Lattices and Modular Systems

Example

For P =97 and 3 = 10, we have 10> = 3 (mod P). We consider

the lattice:
Bob\ (-10 1
B ) 3 =10

Let V(25,12) = 25 + 128

For reducing V/, we determine G(17,8) = —2By — By a vector of
the lattice close to V.

Thus , V(25,12) = M(8,4) = V(25,12) — G(17,8).
We verify that 25 + 120 = 145 = 48 (mod 97)
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LNumber Systems for Modular Arithmetic

Lattices and Modular Systems

Example

The reduction is equivalent with finding a close vector.
Let G(X) be this vector, then M(X) = V(x) — G(X)

VI(25:12)

o

P

P=973=10
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LNumber Systems for Modular Arithmetic

Lattices and Modular Systems

A new system

» Polynomial reduction depends of the representation of (3"
(mod P)

» In Thomas Plantard's PhD (2005), 3 can be as large as P,
but with a set of digits {0,...,p — 1} where p is small.

Example: Let us consider a MNS defined with
P=17,n=3,8=17,p = 2. Over this system, we represent the
elements of Z17 as polynomials in 3, of degree at most 2, with
coefficients in {—1,0,1}
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Lattices and Modular Systems

A new system

0 1 2 3 4 5
0 1 37 1= | -1+8+2| 8+
6 7 8 9 10 11
-1+p s 1+4 |-1-3 0 1-5
12 13 14 15 16
- |1-p-p|-1+p5| p° 14 57

The system is clearly redundant.
For example: 6 =1+ 3+ 3% = -1+ (3, or
9=1-F+=-1-4.




Numeration and Computer Arithmetic 22/31
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Lattices and Modular Systems

Construction of Plantard Systems

» In a first approach, n and p = 2% are fixed. The lattice is
constructed from the representation of p in the number
system. P and 3 are deduced. Efficient algorithm for finding a
close vector.

» In a general approach, where P, 3 and n are given, the
determination of p is obtained by reducing with LLL (Lenstra
Lenstra Lovasz, 1982). No efficient algorithm for finding a

close vector.
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Thank you!

LIRMM

D¢
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|—Annexes

Annexes
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Annexe: Avizienis Algorithm

» We note S = X 4+ Y with
X = Xp_1...X0
Y =Yn1..%0
S =5,...5
» Step 1: For i =1 to n in parallel,

tbi= 1 if,xx+y,<-—a+l
1 if,x+y>a—1
0 if, —a+1<x+y;<a-1
and w; = x+yi—[Bxtipa
with w, = tH=0

» Step 2: for i = 0 to n in parallel,

Si=wj+¢ 7 = LRMM
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Annexe: Functions computable using one mode of BKM

b —er EX |— be? = E|— cos 6 a
Q Q .
O—E{"gE,{—O O_Eivng'{_Slne b
a —x ng—O 0 —ix gL;—O 0

8] 8|

O—L{ [_% L0 O—L{ Lx L0 0
s CE el e G

(3} Q
0 g ga—0 b 2 e
0 —ux & 1x—Ina 0 —ix g Lx

— —
0 -y 40 0 —y o

(&)= (550 <) (3)

EY EXl— ¢
E -qé ey p—d
Ly £ x—0
82

y o o0
1
0
Inva? + b?
arctan b

a
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Annexe: NAF, Computing
Data: Two integers kK > 0 and w > 2.
Result: NAFW(/() = (k/_lk/_g e klko).
| —0;
while kK > 1 do

if k is odd then
k; +— k mod 2"%;
if kK, >2"~1 then
| kj— Kk —2";
end
k — k — ky;

else

| k<0
end
k— k/2,1 —[1+4+1;

end
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Annexe: Double and Add with NAF,, @
Data: Pc E, k= Netw >2, NAF,(k) =
P; = [i]P pour i € {1,3,5,...,2""1 — 1}
Result: Q = [k]P € E.
begin
Q+— Py_;
pour i =/—2...0 faire
Q « [2]Q;
si k; # 0 alors
si ki > 0 alors
| Q«— Q+ Py;
sinon
| Q— Q- P

fin

1—1ki—2 ... kiko)

fin
fin

end
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Lattices and Modular Systems
Annexe: Examples of Plantard System

Examplel: P=53, n=7, =14, p=2.

We have 37 =2 (mod P). In this number system, integers have at
least two representations, the total number of representations is
128.

The lattice could be defined by (vectors in row):

|
—
~

Vi
Vo
V3
Va =
Vs
Ve
%

L

N

I

_ = O

N

o o
O O O o
O O O oo

|
S
|
—_
S
\
—_
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o
w
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|
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Lattices and Modular Systems
Annexe: Examples of Plantard System

We can remark that there is a short vector : (1,1,0,0,0,0,1) =
Vo +14% Vo + 1425 Vg + 1435 V5 + 1445 Vo + (145 + 1) * Vy + V5.
From this vector we can construct a reduced basis of a sublattice,
using that: 87 =2 (mod P)

11000001
21100000
02110000
00211000
00021100
00002110
000O0OO0OZ2T11
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Lattices and Modular Systems
Annexe: Examples of Plantard System

Example #2: This example is proposed in PhD of Thomas
Plantard. He gives some conditions that number system must
verify: 38 =2 (mod P) and p = 232.

P is the determined:

P =1157920890216366222621247151603347568778042
45386980633020041035952359812890593

Then 3 is deduced

8 = 144740111277045777827655893952245323141792170589
21488395049827733759590399996
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